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Traffic data derived from Global Positioning System (GPS) traces of individual travelers is 

achieving widespread adoption in transportation engineering and planning, practice, and 

research. Currently, the majority of such data is obtained from commercial sources, who provide 

little information about the processes and quality control methods that have been applied to 

address informative missing data patterns and sampling bias. Looking forward to a future of 

connected and autonomous vehicles, when fixed mechanical sensing will likely be a thing of the 

past, there is a growing need to highlight this issue and develop methods to address bias in a 
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principled way. To do this, it is necessary to understand the sampling mechanisms and their 

impact on missing data and bias.  

The goal of this work is to describe the mechanisms leading to bias, inaccuracy, and missing 

data in GPS-based probe vehicle data, and to quantify the impact of these mechanisms 

quantitatively. It is most often the case that commercial probe vehicle data is collected from 

multiple traveler subpopulations, each with a distinct driving profile, data collection technology, 

and penetration rate. Thus, this work develops a framework for estimating the impact of these 

factors on data completeness and bias under heterogeneous driver populations and data collection 

technologies. This framework is validated using microscopic traffic simulation software under a 

range of sampling and traffic conditions. The implications of the estimation framework are 

investigated with respect to real-world probe vehicle datasets and transportation applications.  

The primary contributions of this work are as follows. First, this work develops a 

mathematical framework for describing the relationship between observed data and the true on-

road traffic conditions under different sampling parameters and mixed vehicle populations. 

Second, this work presents an in-depth analysis of the impact of sampling and traffic parameters 

on statistical representation of real-world probe vehicle data. Finally, a set of case studies are 

presented illustrating how the proposed framework can be used to improve probe vehicle data 

quality and fidelity, including the development of a methodology for addressing sampling bias. 

The methods and guidance provided in this work will be of significant value to public agencies 

wishing to use probe vehicle data for various forms of transportation analysis, and will inform 

experimental design and data acquisition agreements for future data collection efforts. Further, 

this work will support future work in missing data imputation and quality assessment. 
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Chapter 1: Overview 

In this work, a framework is developed to describe and address some key quality issues 

present in probe vehicle data. Starting with established queuing theory, this work introduces a 

mathematical model that can accurately describe the sampling process and the resulting sample 

size, bias, and completeness of probe vehicle data under different sampling and traffic conditions. 

The primary contributions of this work a) a framework for estimating sampling bias, sample size, 

and completeness in heterogeneous vehicle populations, b) an in-depth analysis of the impact of 

these factors on real-world probe vehicle data, and c) two case studies illustrating how the proposed 

framework can be used in planning and executing probe vehicle data collection projects. The 

methods and guidance provided in this work will be of significant value to public agencies wishing 

to use probe vehicle data for various forms of transportation analysis, and will inform experimental 

design and data acquisition agreements for future data collection efforts. Further, this work will 

support future work in missing data imputation and quality assessment.  

The remainder of this document is structured as follows: Chapter 2 provides a general 

background on the problem space and outlines the objectives of this work in detail. Chapter 

Chapter 3: covers relevant literature on missing data, sampling bias, and previous efforts to address 

these challenges. Chapter Chapter 4: develops a mathematical framework for estimating sample 

size, bias, and missing data rates for a given set of traffic and sampling parameters. In Chapter 

Chapter 5:, the microscopic traffic simulation work completed to validate the framework 

developed in Chapter Chapter 4: is described. Chapter Chapter 6: develops a set of case studies to 

demonstrate the application and implications of the proposed framework, including: an analysis of 
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completeness using real-world probe vehicle data (6.1), development of a probe data collection 

plan to meet sample size and completeness requirements (6.2), and a set of methods for addressing 

sampling bias (6.3). Chapter Chapter 7: offers some additional discussion and concluding remarks.  

Chapter 2: Introduction 

2.1 Problem Statement 

Over the past few years the quality and coverage of probe vehicle data has advanced along with 

improved Global Position System (GPS) accuracy and increased probe vehicle penetration rates. 

Correspondingly, there has been a rapid increase in the reliance on probe vehicle data in 

engineering practice and in research. Such data has the potential to offer greater coverage and 

granularity compared to conventional transportation data, and do so without the high cost and 

complexity associated with maintaining a large network of on-road sensing hardware. 

In a general sense, this work is motivated by potential of probe vehicle data, and eventually 

data from connected and autonomous vehicles, to increase the scope, granularity, and inclusiveness 

of transportation planning, management, and analysis activities. However, this potential cannot be 

fully actualized without addressing the current quality and bias issues. Toward this end, there are 

three primary motivations for this work. The initial motivation for this work came from a desire to 

raise awareness and interest in the topic of probe vehicle data sampling bias in public agencies and 

the transportation field in general. Much of the previous work on validating probe vehicle data 

quality has been based on empirical studies which largely ignore causal mechanisms that 

contribute to bias and uncertainty. Second, and more importantly, this work seeks to explain and 

quantify the causal mechanisms related to probe vehicle bias, sample size, and missingness, to 

inform experimental design and the development of methods to address missing data and bias. 
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Finally, this work is motivated by the need to consider sampling and bias in probe vehicle data 

analysis, and supports this goal by providing a quantitative explanation for many of the 

idiosyncrasies of this data. These three motivations are discussed in more detail in the following 

subsections. 

2.1.1 Commercial Probe Vehicle Data – the Black Box 

The majority of prove vehicle data comes from commercial sources who provide little information 

to the end user regarding how informative missing data patterns and sampling bias are addressed. 

An intuitive understanding of how this data is collected, as well as some previous work on this 

topic (Hallenbeck and McCormack 2015), suggests that a certain amount of sampling bias is 

inevitable, but the causal mechanisms and extent of this bias are not often discussed. As we look 

forward to a future of connected and autonomous vehicles, when fixed mechanical traffic sensors 

are all but obsolete, it will become increasingly vital for public agencies to be involved in the data 

collection, processing, and quality control processes, rather than simply purchasing a pre-packaged 

product from one or more vendors.  

It is no secret that GPS traces are often noisy, with many anomalous and inaccurate values. 

Furthermore, a substantial amount of work is needed to associated millions of GPS traces with a 

geospatial representation of the road network and aggregate it to link-level traffic data, a process 

that is itself imperfect and often leads to additional errors. Commercial probe vehicle data 

providers are currently in control of and responsible for every aspect of data processing, anomaly 

detection and quality control, spatial conflation, and aggregation. We can only assume that these 

companies have methods in place to deal with quality and bias issues. However, understanding the 

mechanisms contributing to bias is key to addressing it in a principled way. Thus, if the customer 

and user is not made aware of the processing methods that are applied to the data, it seriously 
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undermines the confidence that can be placed in the product. Previous work has shown that 

commercial traffic data generally conforms to the quality requirements placed in the procurement 

documents in terms of aggregate measures of accuracy and bias (I-95 Corridor Coalition 2018). 

That said, the significant temporal and spatial variability in data quality maybe in part driven by a 

lack of considerations for the contributing mechanisms. The customer is in general not able to 

assess this possibility, because the data is delivered in an aggregate state with little indications of 

the adjustments and processes that have been applied to it.  

Figure 2-1 illustrates the process of scientific inquiry in very general terms, starting with 

the identifying and defining a research question and proceeding (potentially in a cyclical fashion) 

to reach a conclusion. In most such inquiries, the notion of drawing conclusions with little 

knowledge of or control over how the data is collected and processed would be disconcerting. 

However, as shown in Figure 2-1, this is the reality when commercial probe data is applied in 

traffic operations and safety analysis. While probe vehicle data has significant benefits over 

conventional traffic monitoring technologies, its usefulness would be improved dramatically by 

opening up the “black box” that obscures the data collection and processing procedures performed 

by data providers. If data consumers (i.e. public agencies and engineers) were allowed more insight 

and involvement in the data collection, processing, and quality control processes, more efforts 

could be made to develop and implement improved data processing and quality control methods, 

and to consider any remaining weaknesses in the data in subsequent analysis. The end result would 

likely benefit both the consumers and providers because engineers, decision makers, and the public 

could place greater faith in the resulting analysis and conclusions.  



www.manaraa.com

 

 

7 

 

Figure 2-1: An Illustration of Scientific Inquery 

2.1.2 Addressing Bias and Missing Data 

Probe vehicle data is derived from the GPS updates of a contributing subset of all vehicles 

on the road, and is most often aggregated to link-level mean speeds or travel times before it is 

delivered to customers. GPS updates are not delivered continuously, instead vehicle locations 

and/or speeds are updated at (usually) regular intervals. Thus, the expected number of point 

updates that are represented in a link-level traffic observation over a fixed time period is a function 

of a) the number of contributing vehicles on the road, b) the sampling frequency distribution of 

the contributing vehicles, and c) the travel speed distribution of the contributing vehicles (i.e. faster 

moving vehicles will spend less time on a link, and so be sampled fewer times in a time interval 
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all else being equal). Commercial probe vehicle data is most often aggregated from multiple 

provider types and technologies, each of which is associated with a certain penetration rate, 

sampling rate distribution, and driving profile (Bucknell and Herrera 2014; S. Kim and Coifman 

2014). All else being equal, higher sample counts will be associated with slower moving vehicles, 

higher penetration rates, and more frequent sampling. Understanding the sampling bias and 

missing data patterns that arise from this mixture of populations is crucial to assessing the quality 

and suitability of a probe vehicle dataset for various types of transportation analysis. It is the intent 

of this work to develop a framework to describe these causal mechanisms in quantitative terms, 

and show how this framework can be used to improve probe vehicle data quality and fidelity.  

Fundamentally, there are to factors that contribute to bias in probe vehicle data. First, with 

a mix of vehicle driving characteristics and sampling rates, certain subpopulations are likely to be 

over represented. Second, all else being equal, high volume, more congested time periods are more 

complete than less congested time periods. Figure 2-2 illustrates the sampling process for two 

vehicles traveling across three road links during a given time interval. It is clear that vehicle B has 

produced a larger number of samples on all traveled links, which may be due to a) more frequent 

sampling, b) lower travel speed, or c) a combination of the two. As a result, vehicle B is more 

likely to be observed on any given road segment and may be weighted more heavily in the resulting 

speed estimate (depending on how the point speeds are aggregated). The fact that different 

vehicles, with different speeds and sampling rates, are represented differently in the resulting 

traffic data is the first source of bias.  
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Figure 2-2: Sampling Process for Two Vehicles on Three Road Links 

The second source of bias is the fact that higher traffic density, more congested conditions are less 

likely to be missing from a probe vehicle data set that uncongested conditions. Data can only be 

obtained for time intervals during which a probe vehicle passed through the road link(s) of interest. 

Because the probe vehicle population constitutes a small fraction of the overall vehicle population, 

the probability of a probe vehicle appearing on a road link increases with traffic density as shown 

in Figure 2-3. Generally speaking, heavier traffic conditions are of the most interest for public 

agencies, so it could be argued that this is nearly an ideal scenario. However, consider a travel time 

reliability study based on such data. If a particular road section becomes heavily congested 20% 

of the time period of interest and is otherwise free-flowing, the congested period will likely be 

nearly complete while the uncongested time periods will be missing data to a significantly greater 

degree. It is clear from this discussion that bias and missing data are two closely related problems. 

Missing data is a general quality issue that, on its own, can have deleterious impacts on analytical 

results. However, because the pattern of missingness is related to the quantity of interest, 

missingness tends to bias the observed data toward slower moving conditions, causing further 

degradation of quality.  
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Figure 2-3: Congested (bottom) vs. Uncongeted (top) Sampling Conditions 

2.1.3 Understanding the Characteristics of Probe Vehicle Data 

Intuitively, it seems likely that increasing the overall penetration rate of contributing vehicles will 

gradually improve the accuracy of the resulting traffic data to the point where it is perfectly 

representative of the true conditions. However, as this work demonstrates, increased sample size 

does not necessarily lead to improved accuracy, and in some cases may actually exacerbate 

sampling bias. Further, many of the quality issues observed in existing probe vehicle data sets can 

be understood as artifacts of the data collection process. Because of this, understanding the 

sampling and data collection process is key to informed application of probe vehicle data in 

engineering analysis.  

Consider that a number of past studies have dealt with high missing data rates, errors, and 

anomalies with little or no consideration given to the causal factors related to the sampling process 

(e.g. Gong and Fan 2017). In many cases, the anomalies will arise from more or less obvious non-

sampling related factors, such as construction activities, inclement weather, and others. It critically 

important to understand and distinguish erroneous data from anomalous traffic conditions, one 

being a data quality issue that must be addressed prior to completing any analysis and the other a 

potential phenomenon worthy of study. A good example can be found in (Jenelius and 
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Koutsopoulos 2013), where it is hypothesized that slower speeds on shorter road links are 

attributable to deceleration / acceleration behavior. It is entirely possible that the authors have 

correctly identified the primary cause of the observed traffic behavior. However, no mention was 

made of potential biases due to faster vehicles being less likely to be observed on shorter links, 

especially for low frequency probe vehicle data as was used in this study. Thus, this work is in part 

motivated by the need to inform transportation analysts and researchers that will be expected to 

apply probe vehicle data in transportation studies, such that data quality issues are identified and 

treated in a principled way.  

2.2 Background 

2.2.1 A brief History of Crowd Sourced Traffic Data 

The earliest work in mobile GPS as a traffic data source preceded the rise of GPS enabled mobile 

phones, and so generally assumed that dedicated hardware and communications systems would be 

required (Shawn M Turner et al. 1998). In fact, the earliest commercially available probe vehicle 

data came from freight, taxi, and other commercial vehicles equipped with GPS transponders as 

well as, to a lesser extent, dedicated in-vehicle consumer GPS units. For example, the company 

INRIX based in Kirkland, WA was founded in 2004, and their initial flag ship product consisted 

primarily of aggregated data from commercial vehicle-based dedicated GPS (INRIX 2006). 

NAVTEQ was another early leader in probe vehicle-based traffic data, and began offering real-

time traffic data based largely on commercial GPS probes in 2007 (Wolstan 2007). As mobile 

phones became more capable and ubiquitous, interest in using their combined locationing and 

communications capabilities to crowd source traffic data grew. Among the first real world 

applications of crowd sourced cell phone location data for traffic information, Google Maps began 

offering real-time traffic information in  early 2007 (D. Wang 2007; Crackberry 2007). Early work 
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in mobile phone-based traffic data also included the Mobile Century and Mobile Millennium 

projects at UC Berkley (Herrera et al. 2010; K. Greene 2008). In the Mobile Millennium project, 

volunteers were asked to contribute data via a mobile phone app in return for access to real-time 

traffic condition updates (K. Greene 2008).  

 As the quality and coverage of probe vehicle data improved, public agencies were 

increasingly interested the potential of such data to meet their needs at lower cost and without the 

traffic disruption associated with maintaining fixed mechanical traffic sensors. In 2008, the I-95 

Corridor Coalition project selected INRIX as the primary traffic data provider for their Vehicle 

Probe Project, a multi-state project with the goal of providing coalition members with better access 

to travel-time and speed data (I-95 Corridor Coalition 2018). The availability and use of 

commercial probe vehicle data in traffic information systems and analysis increased in the years 

that followed, and in late 2013 HERE North America (formerly NAVTEQ/Nokia) began providing 

probe vehicle data for the entire national highway system under contract with the Federal Highway 

Administration (FHWA). This dataset, titled the National Performance Management Research 

Data Set (NPMRDS), was obtained through mobile phones, dedicated GPS, and embedded fleet 

systems and provided by the FHWA free of charge to metropolitan planning organizations (MPOs) 

and departments of transportation (DOTs) throughout the USA for performance monitoring and 

planning activities (FHWA Office of Operations 2013). The NPMRDS data provider was switched 

to a consortium including INRIX in 2017, but the program remains an important source of traffic 

data for DOTs and MPOs across of the country (FHWA 2018). In 2014, the I-95 Corridor Coalition 

Vehicle Probe Project was expanded to include data from HERE and TomTom, as well as INRIX 

(I-95 Corridor Coalition 2018). The data provided by these three vendors has been subjected to 
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substantial testing and validation, which to date likely constitutes the most comprehensive 

validation and comparison of commercial probe vehicle data.  

Probe vehicle data from the NPMRDS and Vehicle Probe Project, as well as multiple other 

acquisitions from various vendors, have been extensively applied in traveler information systems, 

performance monitoring, research, and engineering work. For example, the Texas Transportation 

Institute’s Urban Mobility Report (and subsequently the Urban Mobility Scorecard) has been 

based in part on INRIX data since 2010, having previously been based exclusively on federal and 

local transportation agency data (Schrank, Lomax, and Turner 2010; Schrank and Lomax 2009). 

The Danish Road Directorate uses commercial probe vehicle data for traffic monitoring and 

management activities, and a number of other transportation agencies around the world are moving 

in this direction (Bends 2017; Iteris Inc 2018; Mcnamara et al. 2015; EUEIP 2018). In addition to 

practical applications, it is clear from Figure 2-4 that the use of probe vehicle data in research has 

risen dramatically over the last decade.  

 

Figure 2-4: Trend for publication topics "floating car" or "probe vehicle" which include the 

term “GPS” since 1998 (Science 2018) 
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It is worth noting that the use of traveler GPS traces for collecting traffic information is not limited 

to on-road vehicles. A great deal of research has applied such data for non-motorized travel and 

transit. For example, previous work has examined the use of mobile phone GPS traces for bicyclist 

experience mapping (Eisenman et al. 2009), identifying spatial and temporal trends in sporting 

activity (Ferrari and Mamei 2013), and combined with fixed sensor data to estimate network-wide 

bicycle volumes (Strauss, Miranda-Moreno, and Morency 2015; Jestico, Nelson, and Winters 

2016). However, GPS data comes with a unique set of bias challenges for non-motorized vehicle 

traffic, because the travel reporting process most often requires active participation on the part of 

travelers (Romanillos et al. 2016; Jestico, Nelson, and Winters 2016). For example, it is most often 

the case for bicycle data that either a) cyclist GPS traces are collected by an athletic performance 

tracking application, which are disproportionately used by more experienced riders or b) GPS 

traces are collected by a study-specific data collection application, which are most likely to recruit 

more enthusiastic and engaged cyclists.  

 Much of the early work in GPS-based traffic data was in relatively small-scale, carefully 

controlled experiments. In such experiments, for example the Mobile Century and Mobile 

Millennium projects, researchers had control over and knowledge of every aspect of data collection 

and processing, and the results could be evaluated in light of this knowledge. Currently, the 

majority of such data comes pre-aggregated from commercial sources and, except in a few very 

limited cases, this knowledge and control has been sacrificed to protect intellectual property and 

achieve economies of scale. In the short term this would seem to be a relatively good bargain, 

allowing public agencies to previously unimaginable quantities and coverage of traffic data at 

comparatively low cost. However, as we look forward to a future of connected and autonomous 

vehicles, when fixed mechanical sensors will be all but obsolete, allowing this commercial 
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monopoly on every aspect of traffic data collection and processing to continue seems both perilous 

and probably impractical. Actualizing a system of fully connected and autonomous vehicles will 

require technological and strategic partnerships between public and commercial agencies, 

partnerships that are not likely to be conducive to intellectual property protection at the expense 

of transparency. Figure 2-5 illustrates the author’s view on the progression of probe vehicle data 

from small scale experiments to ubiquity in research and practice. While it is only one person’s 

perspective, the trajectory suggests increased data transparency will (and should) accompany the 

transition to a fully connected transportation system.  

 

Figure 2-5: The Future of Probe Vehicle data: The Author's View 

2.2.2 Probe Vehicle Data Basics 

In research, there are a number of different ways in which prove vehicle data collection is 

conceptualized and/or performed. Some have envisioned a system where more of the processing 

is completed by on-vehicle hardware, in order to reduce the amount of information that is 

transmitted to the processing center, e.g. (M. Ferman, Blumenfeld, and Dai 2005). The 

assumptions made in this work regarding the technologies and methods of probe vehicle data 
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collection draw from a number of sources (Jenelius and Koutsopoulos 2014; Tilley 2012), and to 

the author’s knowledge represent the current state of practice. As shown in Figure 2-6 (adapted 

from (Tilley 2012; Chen, Chen, and Liu 2013; M. Ferman, Blumenfeld, and Dai 2005), onboard 

GPS hardware (including mobile phones, consumer GPS, or commercial GPS units) determine the 

location of the vehicle at discrete points in time via communication with GPS satellites. For a 

variety of reasons including battery/energy conservation, GPS updates are not delivered 

continuously, and instead are delivered at regular time intervals. The vehicle’s speed and heading 

is determined from subsequent location updates, and the resulting vector of location, speed, 

heading, time, and possibly other state information is transmitted to a data processing center via 

cellular or satellite communications. At the processing center, vehicle state vectors are processed 

and matched to a map of the road system, and aggregated to produce unique measures for each 

road link and observation interval. In the case of commercial data providers, the data quality 

control and aggregation methods are typically proprietary. In addition to link-level speed or travel 

time data, a variety of other traffic products may be produced at the data processing center 

including predictive analytics and anomaly detection, origin-destination data, and others. Here, the 

focus is on link-level speed and travel time data.  



www.manaraa.com

 

 

17 

 

Figure 2-6: Conceptual Illustration of Probe Vehicle Data Collection Process 

The population of vehicles that contribute to a dataset represents some sample of the total vehicle 

population, which may or may not be representative in terms of average speed and/or driving 

behavior. Further, a variety of GPS and communications devices and vehicle subpopulations are 

typically represented in this sample, each of which may deliver vehicle state updates at different 

frequencies (i.e. different sampling rates), and may represent different subpopulations. Thus, there 

are multiple sampling-related mechanisms that can contribute to bias in probe vehicle data. First, 

slower moving vehicles are more likely to be observed, and will produce a greater number of 

samples, all else being equal (Jenelius and Koutsopoulos 2014). As a result, slower moving 

vehicles may be overrepresented in the observed data, and more congested time periods will be 

less likely to produce missing observations (Hallenbeck and McCormack 2015; Bitar 2016). 

Second, it is likely that certain subsets of the overall vehicle population are more likely to 

contribute to the dataset (i.e. higher penetration rate), which can lead to overrepresentation and 

bias (Patire et al. 2015). For example, taxis and delivery vehicles are more likely to use some form 
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of GPS than personal vehicles, and are also likely to differ in their driving behavior and average 

speed. Finally, if different subsets of the contributing vehicle population are sampled more 

frequently, the driving profile of this subpopulation will be overrepresented. For example, if 

delivery fleet vehicles were sampled every second, while the average sampling interval over the 

entire contributing vehicle population is 30 seconds, the simple mean speed would over-represent 

delivery vehicles. Though there is significant interaction with the methods used to aggregate point 

measurements into link-level traffic observations, different combinations of these factors will 

contribute to different levels of bias. In fact, bias can be seen to vary with traffic conditions, time 

of day, and location in previous probe vehicle data validation work (I-95 Corridor Coalition 2018). 

2.2.3 Eulerian vs. Lagrangian View 

It is important to note, when comparing probe vehicles to fixed, static sensors as sources of 

transportation data, the distinction between Lagrangian and Eulerian specifications of traffic flow 

(Work and Bayen 2008). Fixed sensors observe traffic flow and speed as a time varying process 

at a fixed location, or an Eulerian view of traffic flow. GPS traces follow individual vehicles as 

they move through time and space, resulting in a Lagrangian view of traffic flow. Previous work 

has provided a number of methods for uniting these two perspectives, in order to combine fixed 

mechanical sensor and probe vehicle data in characterizing traffic flow and to describe the 

correspondence between Lagrangian and Eulerian representations of existing analytical models of 

traffic flow, among other things (Matsukidaira and Nishinari 2003; Xia et al. 2017; Yuan et al. 

2012).  

Though much of the established body of research in traffic flow theory is based on the 

Eulerian perspective (Duret and Yuan 2017), the Eulerian and Lagrangian perspectives can 

describe the same underlying physical processes and support the same mathematical conclusions. 
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However, as a data collection paradigm, both have different strengths and weaknesses. Fixed 

sensors can provide a complete and unbiased view of traffic state, but do so at fixed point locations. 

Probe vehicles can provide a more complete picture of the speed profile along a roadway, but come 

with bias and sparsity challenges. Among these two, probe vehicle data is the only one that is likely 

to provide full coverage of the road network in the near future at reasonable cost (Hofleitner et al. 

2012; Treiber and Kesting 2013). Additionally, the Lagrangian perspective allows the specification 

of ad hoc trips and travel time estimation based on these trips. Rather than attempting to construct 

travel times out of point speed measures, often ignoring control delays and slowdowns, with probe 

vehicle data it is possible to estimate the true travel time as experienced by a vehicle on the road. 

Due to these and other benefits, probe vehicle data can be expected to constitute an increasing 

share of the traffic data used in transportation analysis, management, and planning in the future.  

2.3 Research Objectives 

2.3.1 Overview 

The objectives of this research are as follows: 

 To develop a mathematical framework to describe the mechanisms influencing sample 

size, missingness, and bias in probe vehicle data. This framework will provide a strong 

foundation for improving the quality and fidelity of this important source of traffic data. 

 Demonstrate how this framework can be implemented analytically and using Monte Carlo 

simulation 

 To validate the proposed framework using microscopic traffic simulation. 

 To evaluate and illustrate the impact of different traffic and sampling conditions on sample 

size, sampling bias, and completeness. 
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 To build on the proposed framework by applying it to foundational quality and 

completeness challenges in probe vehicle data including: 

o Estimating sample size and effective sample size (in terms of vehicle and sample 

count); 

o Computing expected missing data rates under different conditions; 

o Estimating sampling bias under different conditions; 

o Conducting planning level analysis for future probe vehicle data collection 

efforts; 

o Develop and demonstrate methods to address sampling bias and completeness 

2.3.2 Expected Benefits 

 A more complete understanding of the relationship between traffic state, vehicle type and 

driving behavior distribution, sampling parameters, and probe vehicle data bias and 

missingness. This understanding will support informed application of existing probe 

vehicle data to engineering problems, as well as ongoing work in improving the data 

collection and quality control process.  

 A mathematical model for bias and missing data that can support the development of 

methods for unbiased data imputation, bias correction, and other quality improvement 

methodologies.  

 A quantitative framework for analysis supporting future probe vehicle and connected 

vehicle data collection efforts. This framework, and illustrative example provided, will be 

a useful tool for designing future experiments and assessing the data quality implications 

of different approaches.  
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2.4 Study Scope 

This research is oriented toward addressing a set of data quality challenges unique to a particular 

source of data and application scenario. Specifically, it focusses on GPS-based probe vehicle data 

and the generation of discrete time road link level speed or travel time data. Additionally, this work 

largely deals with uninterrupted traffic flow, where traffic dynamics are primarily driven by 

vehicle-vehicle interactions and roadway geometry rather than traffic control systems. While many 

of the same principles will be at work on signalized facilities, a great deal of additional complexity 

is introduced that is beyond the scope of this work. That said, the work described here provides a 

suitable foundation on which to develop models describing a wide range of scenarios, including 

signalized arterials, non-motorized travel, and others.   

 There are many factors that can complicate the process of obtaining GPS data from vehicles 

and turning into a form that accurately represents the traffic state and is useful for transportation 

analysis. GPS error/accuracy is one such factor, along with communications reliability, application 

design and performance, and others. The work described here strictly deals with the sampling and 

data aggregation processes and resulting impacts on the quality and completeness of traffic 

observations.  

2.5 Dissertation Organization 

This work described in this dissertation has three major components: 1) the development of a 

mathematical framework for describing sample size, missing data rates, and sampling bias in 

mobile location-based traffic data; 2) the development of a simulation model and set of 

methodologies for applying the proposed framework in estimating sample size, missing data rates, 

and sampling bias, as well as methods addressing sampling bias; and 3) The design and execution 
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of several case studies demonstrating the utility of the proposed framework in improving the 

quality of probe vehicle data and planning data collection efforts.  

 The remainder of this dissertation is structured as follows: Chapter 3 provides an overview 

of the state of the art on probe vehicle speed estimation, data quality and bias, and missing data 

theory and mechanisms. In Chapter 4 the mathematical framework for describing the probe vehicle 

data sampling process is developed, as well as implementation details. Chapter 5 describes the 

development of a simulation model and validation of the proposed framework. Chapter 6 offers 

three case studies showing how the proposed mathematical framework and methods can be used 

in assessing and improving the quality of probe vehicle data, including the development of a 

methodology for addressing sampling bias.  
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Chapter 3: State of the Art 

3.1 Missing Data 

3.1.1 Completeness of Probe Vehicle Data 

As for loop detectors and other traffic sensors, missingness is an important quality issue in probe 

vehicle data. Though the completeness of commercial probe vehicle data has improved over the 

last decade (Hosuri 2017), it is clear that the primary reason for missing data is the lack of a 

contributing vehicle on a road segment during a given time interval (Bitar 2016). This means that 

the probability of data being missing is correlated with both travel time and traffic volume, which 

suggests that bias can result if missing data is not addressed in a principled way. (Cambridge 

Systematics and Texas Transportation Institute 2015) analyzed a subset of the National 

Performance Monitoring Dataset (NPMRDS) over ten eastern states in 2014. They found that 

interstate highways were 58% complete, while the average completeness for all other road classes 

was 22%. (S. Kim and Coifman 2014) analyzed a probe vehicle dataset from INRIX on a 14 mile 

corridor in 2014 and found that, though there were no missing observations (due to processes 

applied by the provider), there were a great number of repeated measurements over multiple time 

intervals. This indicates that, at least at the level of temporal aggregation the data was reported, 

completeness was well below 100%.  

Some previous work has investigated the minimum penetration rates required to achieve 

an acceptable level of completeness. For example, (Boyce, Hicks, and Sen 1991) based their 

computations on the requirement of having at least one contributing vehicle present on a certain 

fraction of road segments within a given observation interval, ignoring sampling rate. (Xiaowen 

Dai, Ferman, and Roesser 2003) develop a simulation model to estimate the penetration rate 
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needed to achieve fixed levels of accuracy and coverage. This work looked at the influence of 

observation interval length, but considers only a single sampling rate of 1 sample / 10 seconds.  

(M. A. Ferman, Blumenfeld, and Dai 2003; M. Ferman, Blumenfeld, and Dai 2005) investigate 

the relationship between data completeness, relative error of measurement, and reporting interval 

(not sampling rate). This work represents the only literature identified that, like this work, attempts 

to develop an analytical formula for data completeness. However, this paper assumes a single 

distribution of vehicle speeds and a single fixed sampling rate, and ignores the influence of 

sampling rate on completeness and speed estimation. 

3.1.2 Missing Data Mechanisms 

Much of the body of statistical knowledge on the theory and methods for address missing data 

were developed for/by psychologists and other scientists who frequently administer surveys 

(Graham 2009; Rubin 1976; Schafer and Graham 2002). One can consider the probability of a 

given observation being missing and resulting pattern of missingness as arising from some causal 

mechanism that may or may not be related to the quantities of interest. In statistical terms, missing 

data mechanisms are defined as falling into one of three categories (R. Little and Rubin 2002; 

Rubin 1976). First, “missing completely at random” (MCAR) is a special case of MAR, and refers 

to situations in which the probability of missingness is independent of both the observed and 

unobserved values. In practical terms, this means that the observed data is a random sample of the 

complete data (Raghunathan 2004). “Missing at random” (MAR), describes a situation in which 

the probability of missingness is independent of the unobserved data conditioned on the observed 

data. Finally, if data is not MAR or MCAR, it is referred to as “missing not at random” (MNAR) 

(Graham 2009). MNAR is a non-ignorable missing data pattern, which means that the mechanisms 

driving missingness cannot be ignored in the methods used for imputation and/or analysis (R. Little 
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and Rubin 2002; Raghunathan 2004). From this, it is clear that the missing data mechanism can 

lead to systematic differences between the distributions of the observed and missing data which 

must be addressed in any missing data treatment (Graham 2009). 

Although a variety of methods exist to handle missing data, including but not limited to 

deleting records with missing values and single and multiple imputation, missing data remains a 

challenging issue (Schafer and Graham 2002). Specifically, White, Higgins, & Wood, (2008) note 

that validity of experimental results can be affected when the missing samples are not 

representative of the population of interest. Further, if analysis methods are used that consider 

missing data to be MAR or MCAR when neither of these two assumptions describe the missing 

data pattern, there is strong possibility of non-response bias (i.e., the bias introduced when samples 

not reporting data have some fundamentally different characteristic(s) than samples reporting 

data). In addition to non-response bias, another issue associated with missing data is decreased 

statistical precision and power in cases where missing values exist over multiple variables in a 

dataset, which may result in researchers making the choice to leave out a significant fraction of all 

observations (Sterne et al. 2009). Depending on the techniques used to account for missing data in 

statistical models, bias in model parameter estimates, standard errors, and hence values of test 

statistics can occur (Allison 2003; Jones 1996; Glasser 1964). 

3.2 Sampling and Aggregation Methods 

In addition to sampling method and parameters, the method(s) used to aggregate point data from 

multiple vehicles on a road segment to estimate traffic state have a considerable impact on the 

resulting accuracy and bias. (Kong et al. 2013) compare a curve fitting method with a vehicle 

tracking method for estimation of mean link speed, and show that the vehicle tracking method 

generally produces more accurate results. Though it is not entirely clear in this paper, the superior 
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performance of the vehicle tracking method seems to be in part due to calculation of individual 

vehicle trace speeds prior to computing mean link speeds, which makes sense because it would be 

less likely to overweight slower or more frequently sampled vehicles. (Zhang, Xu, and Liao 2013) 

introduce a time decaying weighted average schemes which take each GPS record and weights it 

according to how recently it arrived, and suggest a weighted resampling approach for estimating 

the current mean speed on a road segment. This method does not acknowledge sampling bias, but 

in theory could reduce the bias associated with differing sampling rates by assigning the largest 

weight to the most recent few samples. (Zheng and Van Zuylen 2013) propose a neural network 

model for link-level travel time estimation using sparse probe vehicle data. However, this method 

requires ground truth travel time data for model training, which is not likely to be available in most 

cases.  

 A significant amount of previous work has assumed that samples are obtained at very high 

frequency (e.g. 1-3 seconds / sample) or ignored the sampling frequency issue altogether (D’Este, 

Zito, and Taylor 1999; Long Cheu, Xie, and Lee 2002; Herrera et al. 2010). Under such conditions, 

the influence of aggregation method on the accuracy of the link-level traffic speed measurements 

will be minimal. However, there is significant variation in the sampling frequencies in existing 

probe vehicle data sources, and so there is certainly some interplay between the aggregation 

method and the resulting accuracy. Some previous work has introduced alternative speed 

measurement schemes which obviate the need for an explicit aggregation step. For example, (Qing 

Ou et al. 2011) describes an inflow/outflow model for speed estimation that treats the aggregate 

speed as a random variable to be estimated from observed flow dynamics.  
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3.3 Bias and Accuracy 

Missing data can certainly increase the complexity of working with probe vehicle data, for 

example, consider the need to conduct accurate imputation before analysis or before traffic 

conditions can be reported to the public. However, at the core of the issue is understanding the 

level of inaccuracy, bias, and uncertainty that may be introduced through the sampling mechanism. 

If one can quantify the bias and/or uncertainty associated with a given estimate, more informed 

decisions can be made regarding the development and application of a statistical model. However, 

making such an estimate requires a firm understanding of the relationship between sampling 

methods and the accuracy of the observed data.  

3.3.1 Accuracy 

Very little previous work was found which investigated the relationship between sampling rate, 

penetration rate, and bias / accuracy and completeness in probe vehicle data. (Long Cheu, Xie, and 

Lee 2002) applied microscopic traffic simulation to study the relationship between speed 

estimation accuracy and probe vehicle penetration rate. They conclude that 4-5% probe vehicle 

penetration rate should be sufficient to achieve 5 km/hour in speed accuracy 95% of the time. 

However, this study did not investigate the impact of sampling frequency, and their results 

implicitly assume that probe vehicles will be sampled continuously. Similarly, (Cetin, List, and 

Zhou 2005) applied microscopic simulation to study the impact of penetration rates on travel time 

estimation accuracy in a mixed arterial and expressway network, but again no mention was made 

of sampling frequency. (S.M. Turner and Holdener 1995) investigated the minimum probe vehicle 

sample sizes required to achieve fixed level of accuracy for real-time traffic information, but their 

study was based on automatic vehicle identification rather than GPS data. It is worth noting, 
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however, that this work provides some insight into the minimum sample size (assuming systematic 

bias is not present or has been dealt with) required to achieve an acceptable level of accuracy. 

(Bucknell and Herrera 2014) investigated the impact of both penetration rate and sampling 

frequency on speed estimation accuracy using the NGSIM dataset. They conclude that both are 

closely related to estimation accuracy, and that the relative influence depends on the methods used 

to compute speed as well as the penetration rate / sampling frequency regime. Using simulation, 

(Xiaowen Dai, Ferman, and Roesser 2003) showed that both higher penetration rates and longer 

observation intervals are generally associated with better accuracy, though differing sampling rates 

and mixed speed distributions were not investigated.  

Other studies have investigated the accuracy of probe vehicle data and its relationship to 

sampling mechanism from the perspective of the reliability of the resulting analysis. For example, 

Srinivasan & Jovanis (1996) developed an algorithm to determine the probe vehicle sample size 

needed to obtain certain levels of travel time reliability. They determined that the number of probe 

vehicles needed increases with prescribed reliability level and decreasing length of time period 

over which travel times are measured. Additionally,  Long Cheu, Xie, & Lee (2002) studied the 

number of probe vehicles needed to obtain reliable travel time measurements for urban arterials. 

Several studies have investigated data fusion methods to combine mechanical traffic 

sensing data (e.g. loop detectors) with probe vehicle data to improve the accuracy of speed and 

travel time estimation. Such work as typically either a) ignored sampling frequency altogether 

(Nanthawichit, Nakatsuji, and Suzuki 2003) or b) assumed homogeneous sampling frequencies 

and ignored the impact on estimation accuracy (Liu et al. 2016). One exception can be found in 

(Patire et al. 2015), which applied a Kalman filtering algorithm for data fusion using two different 

real-world GPS probe vehicle datasets. However, the two datasets had significantly different probe 
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vehicle penetration rates, and so provided no solid conclusions regarding the influence of sampling 

frequency on estimation accuracy.  

It should be noted that there are a number of factors unrelated to sampling that influence 

accuracy. For example, some previous work has studied latency, and showed that significant 

latency can be observed in most common probe vehicle datasets (Z. Wang et al. 2018). 

Additionally, (Bitar 2016) discussed the impact of travel time reporting quantization on speed 

estimation accuracy. That is, if travel times are reported in integer seconds (or at low fixed 

precision), the error of speed estimates will increase at lower travel times. Other issues, such as 

GPS accuracy and/or urban canyon effect clearly have some impact on accuracy and completeness. 

3.3.2 Bias 

Sampling bias is defined as a case where a sample statistic is not an accurate representation of the 

underlying parameter in the target population (McCutcheon 2011), and has long been dealt with 

in a wide range of statistical applications including econometrics (Heckman 1977), medicine 

(Victor et al. 2004), sociology (Berk 1983; Winship and Mare 1992), and natural science (Driscoll 

et al. 2012). Various methods have been proposed to address sampling bias, and the selection of 

methods is largely driven by an understanding of the mechanism driving the bias. For example, 

inverse probability weighting is often applied when different subsets of a population of interest is 

sampled unequal selection probabilities (Mansournia and Altman 2016; Seaman and White 2013). 

Bias that arises from a missing data pattern can often be addressed by applying multiple imputation 

before completing statistical analysis, which can generally lead to unbiased imputation under MAR 

missing data mechanisms (R. Little and Rubin 2002; Schafer 1997). 

In probe vehicle data, the bias that arises is driven by multiple interacting mechanisms. 

First, different subpopulations have different penetration rates of contributing vehicles, which can 
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be interpreted as a weighted sampling mechanism. The extent to which this introduces bias 

depends primarily on the similarity of the different subpopulations, but in general it violates the 

assumption of random sampling. The second is that slower moving, and more frequently sampled 

vehicles produce more samples and are more likely to be observed. This means that a) the quantity 

of interest (usually speed or travel time) is related to probability of being observed, and b) another 

form of subpopulation weighting is introduced. The result is that the observed data is potentially 

biased with respect to the true population statistics in a given time period (Bitar 2016; Hallenbeck 

and McCormack 2015), and there is a potentially significant difference between the observed and 

missing data (Henrickson and Wang 2016).  

(Jenelius and Koutsopoulos 2014) analyzed the influence of probe vehicle sampling 

protocols, and showed that time-based sampling (as compared to space-based) is more likely to 

bias the resulting data toward slower moving vehicles and road segments with lower travel speeds, 

and making road segments with faster moving traffic less likely to be observed. This bias issue has 

been identified in other literature, including (Dion, Robinson, and Oh 2011; Lattimer and 

Glotzbach 2012; S. Kim and Coifman 2014). One of the primary factors that contributes to bias is 

the fact that slower moving vehicles spend more time on each road section and, at a given time-

based sampling frequency, will be more likely to be observed and produce more observations 

(Hallenbeck and McCormack 2015). The result is that, under time-based sampling, slower moving 

vehicles are oversampled compared to the population fraction they represent. Despite this, time-

based sampling is the primary protocol for commercial probe vehicle data.  

The bias attributable to the sampling mechanism in probe vehicle data is not always 

apparent in aggregate measures, such as overall mean speed error. For example, in the most recent 

validation work completed as part of the I-95 Corridor Coalition Vehicle Probe Project, results 
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showed a fairly consistent negative bias across all three major data providers (HERE, INRIX, and 

TOMTOM) at higher traffic speeds (which represents the majority of the data) but a somewhat 

variable positive bias at lower speeds (I-95 Corridor Coalition 2018). This could represent data 

smoothing efforts completed by the vendors, greater likelihood of very low speed data being 

flagged as anomalous by the vendor quality control algorithms, or a variety of other possibilities. 

In any case, this result suggests significant interaction between the multiple mechanisms 

contributing to bias, some of which might tend to cancel each other out. The extent to which this 

occurs is essentially random unless the causal mechanisms are explicitly considered in subsequent 

data processing and analysis.  
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Chapter 4: Model Development 

The purpose of the methodology presented in this section is to described the relationship between 

the true underlying traffic state, the sampling parameters, and the observed quantities in a probe 

vehicle-based data collection process. Specifically, this section develops a framework to estimate 

statistical measures describing the sample size, missing data rate, the observed speed based on the 

traffic volume, sampling frequency distribution, instrumented vehicle fraction, and true speed 

distribution. This constitutes the core contribution of this work and, by starting from basic physical 

principles, represents a significant departure from previous efforts in this domain.  

At the most basic level, the approach taken here is similar to that of a queuing problem. 

However, the quantities of interest are not among those typically sought in queuing theory. 

Queuing theory often deals with optimizing a queuing system to achieve an optimal balance of 

cost and service quality or assessing the performance of a system, with a focus on service time, 

waiting time, server utilization, and other quantities related to the operational objectives. Here, we 

are interested in describing aggregate quantities related to data quality rather than operational 

performance measures, but the analytical approach is similar to that of a queuing problem. Thus, 

in addition to operational parameters such as arriving volume, travel time, etc., parameters related 

to the observation process such as probe vehicle sampling rate and penetration rate are considered 

to estimate what will actually be observed in a typical probe vehicle dataset. 

 Section 4.1 describes the framework in general terms, without relying on distributional 

assumptions. Section 4.2 presents the framework described in Section 4.1 in terms of specific 

statistical distributions for the instrumented vehicle arrival rate and true traffic speed. Section 4.3 

describes the framework as a step-by-step procedure for estimating the observed quantities given 

the true traffic parameter distributions, sampling parameters, and roadway geometry. 
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In the following discussion, an observation interval refers to the time period over which 

collected probe vehicle data points are aggregated. That is, an observation interval of 5 minutes 

indicates that all data points are aggregated to the 5-minute level and delivered to the end user as 

a unique traffic observation for each road segment and 5-minute time period. A sampling interval 

refers to the time period between subsequent GPS updates. A vehicle on a sampling interval of 30 

seconds will report its current location and other state information every 30 seconds.  

4.1 General Case 

The objective of this section is to show, in general terms, how expressions for vehicle count, 

sample count, observed speed, and associated statistical measures can be devised based on the 

probe vehicle sampling process. This framework will be described with respect to specific 

statistical distributions in subsequent sections. Here, the focus is on the basic physical and 

statistical principles, with few assumptions regarding the underlying statistical distributions that 

may describe the quantities of interest.   

4.1.1 Sample Count Distribution 

The first step is to describe the distribution of the number of samples obtained, and the 

corresponding probability of an observation being missing, as a function of travel time across a 

road segment (TT), the observation interval (TI), and the sampling interval (sr). The distribution 

of the number of samples obtained on a road segment by a single vehicle within a single 

observation interval will be a function of the time spent on the segment during an observation 

interval and the sampling interval sr. Clearly, the time a vehicle spends on a road segment will be 

the travel time across the segment, TT. However, in order to describe the distribution of interest, it 

is necessary to compute the time spent on the segment during an observation interval, which is a 
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deterministic function of the time of arrival and the travel time. If the time of arrival is referenced 

to the start of a given observation interval, vehicles arriving at or before –TT will spend no time 

on the segment during the interval because they will have left the road segment as the observation 

interval starts. For every second later than –TT a vehicle arrives, a vehicle will spend an additional 

second on the road segment up to the maximum value, which is the minimum of TT and the length 

of the observation interval TI. Finally, for vehicles arriving within min(TT,TI) of the end of the 

observation interval, their time spent on the segment will be reduced by one second for every 

second later they arrive until TI, after which they will spend no time on the segment. This results 

in the trapezoidal function shown in Equation 6.1 and illustrated in Figure 4-1. 

 

Figure 4-1: Trapezoidal function forTime spent in the system 

𝑡(𝑥, 𝑇𝑇) = {

𝑇𝑇 + 𝑥
min(𝑇𝐼, 𝑇𝑇)
𝑇𝐼 − 𝑥
0

𝑖𝑓 − 𝑇𝑇 ≤ 𝑥 < min(𝑇𝐼, 𝑇𝑇) − 𝑇𝑇

                       𝑖𝑓 min(𝑇𝐼, 𝑇𝑇) − 𝑇𝑇 ≤ 𝑥 < 𝑇𝐼 − min(𝑇𝐼, 𝑇𝑇)

𝑖𝑓 𝑇𝐼 − min(𝑇𝐼, 𝑇𝑇) ≤ 𝑥 < 𝑇𝐼       
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                            

  ( 4. 1 ) 

For a given arrival time with fixed sr and TT, the timing of the first sample is the only source of 

randomness, and there are only two possible sample counts. The two possible sample counts are 

the minimum number and 1 plus the minimum number, and the difference between these two is 
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determined by the timing of the samples. For example, if the value of 𝑡(𝑥, 𝑇𝑇) is 15 seconds at 

some x, and sr = 30, a vehicle will be produce 1 or 0 samples, each with probability 0.5. If the 

timing of the first sample is within the 15 second window defined by 𝑡(𝑥, 𝑇𝑇), the vehicle will be 

produce 1 sample and 0 otherwise.  

To understand the form of Equation 4.1, consider that the value of the function 𝑡(𝑥, 𝑇𝑇) 

divided by sr represents the expected number of samples for a given arrival time. Or, in different 

terms, it represents the minimum number of samples plus the probability of 1 plus the minimum 

number of samples. With this interpretation, an intuition can be gained regarding the form of 

Equation 4.1. Note the three arrival times 𝑥1, 𝑥2, and 𝑥3 in Figure 4-2. For Point 𝑥1, the minimum 

number of arrivals is 0 and the maximum is 1. The probability of 1 sample at point 𝑥1 is simply 

𝑡(𝑥1, 𝑇𝑇) ⁄ 𝑠𝑟, and the probability of zero samples is. 1 − 𝑡(𝑥1, 𝑇𝑇) ⁄ 𝑠𝑟. Similarly for point 𝑥3, 

the minimum number of samples is 2 and the maximum is 3. The probability of 2 samples at this 

point is (𝑡(𝑥3, 𝑇𝑇) − 2 × 𝑠𝑟)/𝑠𝑟, and the probability of 3 samples is 1 − (𝑡(𝑥3, 𝑇𝑇) − 2 ×

𝑠𝑟)/𝑠𝑟. This is shown in functional form in Equation 4.2.  

 
Figure 4-2: Sample Count Distribution by Time of Arrival 
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𝑃(𝑛𝑠𝑝𝑣 = 𝑗|𝑥, 𝑇𝑇, 𝑠𝑟) =

{
 
 

 
 

𝑡(𝑥, 𝑇𝑇)

𝑠𝑟
− 𝑓𝑙𝑜𝑜𝑟 (

𝑡(𝑥, 𝑇𝑇)

𝑠𝑟
)   𝑖𝑓 𝑗 = 𝑐𝑒𝑖𝑙 (

𝑡(𝑥, 𝑇𝑇)

𝑠𝑟
)

1 −
𝑡(𝑥, 𝑇𝑇)

𝑠𝑟
+ 𝑓𝑙𝑜𝑜𝑟 (

𝑡(𝑥, 𝑇𝑇)

𝑠𝑟
)  𝑖𝑓 𝑗 = 𝑓𝑙𝑜𝑜𝑟 (

𝑡(𝑥, 𝑇𝑇)

𝑠𝑟
)

0 𝑒𝑙𝑠𝑒

( 4. 2 ) 

Because vehicle subpopulations are defined here in terms of unique combinations of speed or 

travel time distribution parameters and sampling interval, the objective is to express the 

distribution of the number of samples per vehicle conditioned only on these quantities. Thus, the 

categorical distribution describing the number of samples per vehicle conditioned only on travel 

time and sampling interval can be found by integrating Equation 4.2 over the time of arrival of as 

shown in Equation 4.3, where 𝑠𝑋(𝑥) is the PDF for the time of arrival x. The exact form of the 

integral in Equation 4.3 will depend on the form of the distribution 𝑠𝑋(𝑥) (more details on this in 

Section 4.2). Furthermore, the probability of at least 1 sample (or 1 – the probability of 0 samples) 

is the expression min(𝑠𝑟, 𝑡(𝑥, 𝑇𝑇)) /𝑠𝑟 integrated over x.  

𝑃(𝑛𝑠𝑝𝑣 = 𝑗|𝑇𝑇, 𝑠𝑟) = ∫ 𝑃(𝑛𝑠𝑝𝑣 = 𝑗|𝑥, 𝑇𝑇, 𝑠𝑟)𝑠𝑋(𝑥)𝑑𝑥𝑥
   ( 4.3 ) 

Allowing contributing vehicles to be drawn from a mixture of 𝑖 ∈ {1,2, . . , 𝑘} subpopulations, each 

with a mean travel speed probability density function 𝑓𝑉𝑖(𝑣), and sampling interval 𝑠𝑟𝑖, we get the 

expression shown as Equation 4.4 for the distribution of the number of samples per vehicles for 

each subpopulation i. Note 𝑇𝑇(𝑣) indicates the travel time as a function of mean vehicle speed 𝑣. 

𝑃(𝑛𝑠𝑝𝑣𝑖 = 𝑗|𝑠𝑟𝑖) = ∫ 𝑃(𝑛𝑠𝑝𝑣𝑖 = 𝑗|𝑇𝑇(𝑣), 𝑠𝑟𝑖)𝑓𝑉𝑖(𝑣)𝑑𝑣𝑣
  ( 4.4 ) 

Note that the distribution of 𝑛𝑠𝑝𝑣𝑖 conditioned only on 𝑠𝑟𝑖 is identical for all arriving vehicles in 

subpopulation i. Or, similarly, an expression for the expected number of samples per vehicle for 

subpopulation I as shown in Equation 4.5. 

𝐸(𝑛𝑠𝑝𝑣𝑖|𝑠𝑟𝑖) = ∫ 𝐸(𝑛𝑠𝑝𝑣𝑖|𝑇𝑇(𝑣), 𝑠𝑟𝑖)𝑓𝑉𝑖(𝑣)𝑑𝑣𝑣
    ( 4.5 ) 
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A general count distribution 𝑞𝑁𝑖(𝑛) is assumed for the number of vehicles within a subpopulation 

appearing during an observation interval and 𝐸(𝑛𝑖) is the expected value. Equation 4.6 shows the 

distribution of the total number of samples per observation interval for subpopulation i. In this 

expression, 𝐶𝑛𝑠𝑖,𝑛 indicates the weak composition of 𝑛𝑠𝑖, or the set of all possible integer tuples of 

length n which sum to 𝑛𝑠𝑖. In words, this expression is the sum of probabilities over every possible 

number of arriving vehicles and sample counts per vehicle that produces 𝑛𝑠𝑖 samples.  

𝑃(𝑛𝑠𝑖|𝑠𝑟𝑖) = ∑ [𝑞𝑁𝑖(𝑛) ∑ (∏ 𝑃(𝑛𝑠𝑝𝑣𝑖 = 𝑗|𝑠𝑟𝑖)𝑗∈𝑚 )𝑚∈𝐶𝑛𝑠𝑖,𝑛
]𝑛   ( 4.6 ) 

More simply, the expected value of 𝑛𝑠𝑖 can be computed as the product of the expected value for 

vehicle count 𝑛𝑖 and the expected value for the number of samples per vehicle 𝑛𝑠𝑝𝑣𝑖 as shown in 

Equation 4.7. 

𝐸(𝑛𝑠𝑖|𝑠𝑟𝑖) = 𝐸(𝑛𝑖)𝐸(𝑛𝑠𝑝𝑣𝑖|𝑠𝑟𝑖)    ( 4.7 ) 

The distribution of the total number of samples 𝑛𝑠𝑎𝑙𝑙, or the sum over 𝑖 ∈ {1,2, … , 𝑘} of 𝑛𝑠𝑖 can 

be expressed as shown in Equation 4.8. 

𝑃(𝑛𝑠𝑎𝑙𝑙|𝑠𝑟) = ∑ [∏ 𝑃(𝑛𝑠𝑖 = 𝑐𝑖|𝑠𝑟𝑖)𝑖∈{1,2,…,𝑘} ]𝑐∈𝐶𝑛𝑠𝑎𝑙𝑙,𝑘
  ( 4.8 ) 

With a corresponding expected value as shown in Equation 4.9 . 

𝐸(𝑛𝑠𝑎𝑙𝑙|𝑠𝑟) = ∑ 𝐸(𝑛𝑠𝑖|𝑠𝑟𝑖)𝑖∈{1,2,…,𝑘}     ( 4.9 ) 

Finally, the probability of no vehicles being observed (i.e. a missing observation) will be the 

product over all subpopulations of the probability of no vehicles being observed within each 

subpopulation. A general count model of the form 𝑞𝑁𝑖(𝑛) is assumed for the number of vehicles n 

appearing on a road segment during an observation interval for a single subpopulation i. The 

probability of observing no vehicles in an observation interval for a single subpopulation is the 

sum over all possible number of vehicles appearing for subpopulation i multiplied by the 

probability that all of the appearing vehicles produce zero samples as shown in Equation 4.10. The 
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probability of observing no vehicles over all subpopulations is the product of this expression over 

all subpopulations, as shown in Equation 4.11. In other words, it is the probability that the sum of 

𝑛𝑠𝑖 over all subpopulations is equal to zero.  

𝑃(𝑅𝑖 = 0) = ∑ 𝑞𝑁𝑖(𝑛)(𝑃(𝑛𝑠𝑝𝑣𝑖 = 0|𝑠𝑟𝑖))
𝑛

𝑛∈{0,1,2,…,∞}    ( 4.10 ) 

𝑝(𝑅 = 0) = ∏ [𝑝(𝑅𝑖 = 0)]𝑖     ( 4.11 ) 

This formulation assumes that, if a vehicle does not report its state at least once on a road segment, 

it will not be considered to have been observed on that segment. This would be the case for any 

point-wise speed estimation method. However, it is also possible to compute speed in terms of 

update point pairs, in which case any vehicle which appears on a road segment during an 

observation interval will be observed. For this scenario, the vehicle count and probability of 

missingness is strictly determined by the speed of the vehicle and the count distribution 𝑞𝑁𝑖(𝑛), as 

will be discussed in Section 4.2.  

4.1.2 Observed Speed Distribution 

The observed speed for a given subpopulation depends to a great extent on the method that is used 

to combine individual vehicle state updates to aggregate speed measures for each road segment 

and observation interval. For example, it is intuitively clear that taking the simple mean speed over 

all sampled speeds will give different results in general from first aggregating the speed for each 

vehicle and then taking the mean over all vehicle speeds. Correspondingly, one might calculate a 

distance-weighted mean of travel speed between GPS point pairs, which would produce different 

results from point speed-based measures. The three methods considered in this work are listed 

below: 

 Vehicle-wise mean point speed 

 Sample-wise mean point speed 
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 Distance weighted mean speed between point pairs 

We begin with the vehicle-wise mean point speed, because sampling-based methods will the most 

efficient to estimate the observed speed for the sample-wise mean speed case (sampling methods 

will be discussed in Section 4.3.3). The expected value of the observed speed for a single 

subpopulation can be expressed as shown in Equation 4.12. This is the conventional expected value 

formula, or the integral over mean vehicle speed of the product of speed, the probability density 

function for speed, and the probability of being observed, divided by a normalizing term. 

𝐸(𝑣𝑜𝑏𝑠,𝑖|𝑠𝑟𝑖) =
∫ 𝑣×𝑓𝑉𝑖(𝑣)×𝑃

(𝑛𝑠𝑝𝑣𝑖>0|𝑠𝑟𝑖,𝑇𝑇(𝑣))𝑑𝑣𝑣

∫ 𝑓𝑉𝑖(𝑣)×𝑝
(𝑛𝑠𝑝𝑣𝑖>0|𝑠𝑟𝑖,𝑇𝑇(𝑣))𝑑𝑣𝑣

   ( 4.12 ) 

Estimating the expected observed speed overall subpopulations requires the population weighting 

factor shown in Equation 4.13. This expression represents the expected number of vehicles in a 

given subpopulation which are observed within a time interval. As previously noted, 𝐸(𝑛𝑖) is the 

expected number of vehicles appearing on the road segment during a single observation interval. 

𝑀𝑖 = 𝐸(𝑛𝑖) × 𝑃(𝑛𝑠𝑝𝑣𝑖 > 0|𝑠𝑟𝑖)                                         ( 4. 13 ) 

The expected mean speed over all subpopulations can be computed as shown in Equation 4.14. 

This formula represents the weighted average of the expected observed speeds, weighted by the 

expected number of observed vehicles, over all subpopulations. In other words, this can be 

interpreted as the expected value formula for a mixture distribution, where the mixture weights are 

equal to 
𝑀𝑖

∑ 𝑀𝑖𝑖∈{1,2,…,𝑘}
. To understand this representation, consider that the mixture weights represent 

the long-run population fraction for each subpopulation, such that the aggregate speed in each 

observation interval represents a random sample from a k-component mixture distribution.   

𝐸(�̅�𝑜𝑏𝑠|𝑠𝑟) =
∑ 𝑀𝑖 × 𝐸(𝑣𝑜𝑏𝑠,𝑖|𝑠𝑟𝑖)𝑖∈{1,2,…,𝑘}

∑ 𝑀𝑖𝑖∈{1,2,…,𝑘}
                             ( 4. 14 ) 
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To compute the variance for the observed travel time, it is no longer sufficient to consider the 

distribution of the mean vehicle speed across a road segment. This is because, especially at low 

penetration rates and/or infrequent sampling, the observed speed will be based on very few point-

wise observations. The measured variance, then, will reflect the variability in speed across the 

segment for individual vehicles as well as the between-vehicle variance in mean travel time. The 

Law of Total Variance can be used to combine these two sources of variability, but it requires 

estimates of the variance of the mean as well as the variance of the observations given the mean. 

In words, the Equation 4.15 (from the law of total variance (Wooldridge 2010)) is the sum of the 

expected value of the observed conditional variance and the variance in the conditional expected 

value.  

𝑉𝑎𝑟(𝑣𝑜𝑏𝑠,𝑖|𝑠𝑟𝑖) = 𝐸𝑣(𝑉𝑎𝑟(𝑣𝑜𝑏𝑠,𝑖|𝑣, 𝑠𝑟𝑖)) + 𝑉𝑎𝑟𝑣(𝐸(𝑣𝑜𝑏𝑠,𝑖|𝑣, 𝑠𝑟𝑖))  ( 4.15 ) 

Provided some estimate of the variance of a single vehicle’s speed over a road segment 𝜎𝑣𝑖
2  within 

subpopulation i, the observed variance conditioned on the mean will be a function of the number 

of samples obtained. That is, using the formula for the variance of the mean, the observed variance 

can be described as the true variance divided by the sample size. Summing the product of the 

probability of each sample size and the corresponding variance of the mean over all possible 

sample sizes gives the formula shown in Equation 4.16. Note that the interest is only in the 

observed data, so zero count observations are excluded. Because of this, the normalizing term is 

included to insure that the probabilities sum to 1.  

𝑉𝑎𝑟(𝑣𝑜𝑏𝑠,𝑖|𝑣, 𝑠𝑟𝑖) =
∑ 𝑃(𝑛𝑠𝑝𝑣𝑖=𝑗|𝑠𝑟𝑖,𝑇𝑇(𝑣))

𝜎𝑣𝑖
2

𝑗𝑗∈{1,2,…∞}

∑ 𝑃(𝑛𝑠𝑝𝑣𝑖=𝑗|𝑠𝑟𝑖,𝑇𝑇(𝑣))𝑗∈{1,2,…∞}
   ( 4.16 ) 

The expectation of this variance can be found by taking the integral over v of Equation 4.16, where 

𝜎𝑣𝑖
2  is the variance of a single vehicle’s speed over the road segment (ignoring the between-vehicle 
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variance of the mean) and 
𝜎𝑣𝑖
2

𝑗
⁄  is the variance of the sample mean when j samples are obtained. 

This is shown in Equation 4.17. 

𝐸𝑣(𝑉𝑎𝑟(𝑣𝑜𝑏𝑠,𝑖|𝑣, 𝑠𝑟𝑖)) = ∫
∑ 𝑝(𝑛𝑠𝑝𝑣𝑖=𝑗|𝑠𝑟𝑖,𝑇𝑇(𝑣))

𝜎𝑣𝑖
2

𝑗𝑗∈{1,2,…∞}

∑ 𝑝(𝑛𝑠𝑝𝑣𝑖=𝑗|𝑠𝑟𝑖,𝑇𝑇(𝑣))𝑗∈{1,2,…∞}
× 𝑓𝑉𝑖(𝑣)𝑑𝑣𝑣

     ( 4.17 ) 

The variance in the expected value of 𝑣𝑜𝑏𝑠, can be found using the conventional formula for 

variance. This expression, shown in Equation 4.18, is the integral of the squared difference 

between the mean vehicle speed and the expected mean vehicle speed multiplied by the product 

of the speed PDF and the probability that at least one sample point is obtained. Again, a 

normalizing constant is included to insure that the probability term sums to 1.  

𝑉𝑎𝑟𝑣(𝐸(𝑣𝑜𝑏𝑠,𝑖|𝑣, 𝑠𝑟𝑖)) =
∫ (𝑣−𝐸(𝑣))2×𝑓𝑉𝑖(𝑣)×𝑃

(𝑛𝑠𝑝𝑣𝑖>0|𝑠𝑟𝑖,𝑇𝑇(𝑣))𝑑𝑣𝑣

∫ 𝑓𝑉𝑖(𝑣)×𝑃
(𝑛𝑠𝑝𝑣𝑖>0|𝑠𝑟𝑖,𝑇𝑇(𝑣))𝑑𝑣𝑣

  ( 4.18 ) 

This provides a useful expression for the observed variance between vehicles, but a single 

observation represents the mean over all vehicles within a subpopulation observed in a single 

observation interval. To compute the true observed variance, the formulas shown in Equation 4.19 

and 4.20 are used. In words, the weighting term 𝑊𝑖(𝑗) represents the un-normalized probability 

that j vehicles are observed in an observation interval. Inside the summation term is the probability 

that n vehicles arrived, and that j were observed. This is represented by the product of the arriving 

vehicle count PMF evaluated at n and the binomial expression for exactly j out of n being observed. 

The binomial distribution is appropriate to describe the distribution of j because the probability of 

j observed vehicles out of n total vehicles arises from a series of n binary outcomes with fixed 

probability for a given subpopulation. 

𝑊𝑖(𝑗) = ∑ [𝑞𝑁𝑖(𝑛) × (
𝑗
𝑛
)× 𝑃(𝑛𝑠𝑝𝑣𝑖 > 0|𝑠𝑟𝑖)

𝑗
𝑃(𝑛𝑠𝑝𝑣𝑖 = 0|𝑠𝑟𝑖)

𝑛−𝑗
]𝑛∈{𝑗,𝑗+1,…,∞}  ( 4.19 ) 
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𝑉𝑎𝑟(�̅�𝑜𝑏𝑠,𝑖|𝑠𝑟𝑖) =
∑

𝑊𝑖(𝑗)

𝑗
×𝑉𝑎𝑟(𝑣𝑜𝑏𝑠,𝑖|𝑠𝑟𝑖)𝑗∈{1,2,…,∞}

∑ 𝑊𝑖(𝑗)𝑗∈{1,2,…,∞}
    ( 4.20 ) 

The final 𝑉𝑎𝑟(�̅�𝑜𝑏𝑠,𝑖|𝑠𝑟𝑖) indicates the observed variance in mean travel speed for subpopulation 

i. An expression for the combined variance of all vehicle subpopulations can be derived, but it is 

computationally intensive because it requires enumerating all possible combinations of arriving 

vehicle counts.  

 For the distance-weighted mean pair-wise speed, the primary factor influencing inaccuracy 

and bias is the overlap of point pairs between neighboring road segments. That is, for a vehicle 

with a discrete sampling interval sr, it will often be the case that the first point in the pair will fall 

on an upstream road segment, or that the second point in the pair will fall on a downstream 

segment. For internal point pairs, in which both the first and second point fall on the segment of 

interest, the pairwise speed will likely be a more accurate and unbiased estimate compared to point-

wise speeds. For those pairs that overlap a downstream or upstream road segment, the speed 

associated with the pair will in part reflect the travel speed on the adjacent segment(s).  

Despite this, there are three primary reasons why the distance-weighted mean pair-wise 

speed will often provide more accurate and unbiased results. First, pair-wise speed measures are 

typically more accurate than GPS point speeds due to the nature of GPS technology. Second, each 

probe vehicle crossing a road segment can be represented in the segment mean speed estimate, 

even no samples are obtained on the segment of interest. That is, if a vehicle is sampled on both 

an upstream and downstream road segment, the speed across the segment of interest can be 

assigned to the pairwise mean speed between the two segments. Finally, by weighting the speed 

measures according to the distance traveled, the estimated speed better reflects the contribution of 

each vehicle to the segment mean speed. In this way, the distance weighting approach can be 

considered a combination of the favorable elements of vehicle-wise and point-wise mean speed 
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calculation, in that the relative contribution of each vehicle is considered without over-weighting 

slower moving vehicles. Estimating completeness is trivial for this approach, because any vehicle 

which appears on a road segment during an observation interval will be observed. Thus, the count 

distribution 𝑞𝑁𝑖(𝑛) can fully describe this quantity. An analytical form of the relationship between 

sampling and traffic parameters and the observed speed is left for future work.  

4.2 Special Case: Poisson Arrivals 

Following a general introduction to the proposed modeling framework, here the framework is 

described with respect to specific distributional assumptions that follow from established traffic 

literature. It is worth noting that the formulation presented here ignores many of the complexities 

of traffic flow including phase transitions (Kerner and Rehborn 1997), traffic bunching (Nagatani 

1995), and inflow/outflow of vehicles along a road segment. However, it provides an interpretable 

and computationally tractable solution for a variety of traffic conditions that should provide 

adequate fidelity for planning future experiments and evaluating bias and accuracy in terms of 

aggregate traffic measures.  

In this section, the number of observable arriving vehicles within a time period is assumed 

to follow a Poisson distribution. The distribution of the number of vehicles that are actually 

observed, and corresponding number of vehicle updates received, are based on this assumption 

and the probabilistic relationships described in the previous section. The mean vehicle speeds are 

assumed to follow a lognormal distribution, though this choice offers no particular advantage in 

terms of computational complexity. Other distributions of interest are derived with respect to these 

assumptions, and the implications are discussed.  
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4.2.1 Poisson Model for Vehicle Presence 

The probability of n arrivals during an observation interval with rate λ (in units of vehicles or 

devices per observation interval) is given by the Poisson probability mass function (PMF) as 

shown in Equation ( 4.21. Assuming a M/G/infinity queuing system, infinite service channels will 

insure that all incoming users are served as they arrive. This is reasonable for all but the most 

severely congested conditions on a controlled access facility, because vehicles enter a road 

segment as they arrive rather than waiting in queue (though congestion does increase the service 

time and reduce arrival volume). Thus, from Little’s Law, the time average number of users in the 

system (𝜂) is expressed as shown in Equation 4.22, where E(TT) is the mean or expected service 

time, and µ is the departing rate or inverse of E(TT) (Adan and Resing 2001; J. D. C. Little 1961). 

𝑃(𝑛) = 𝜆𝑛 (𝑛!)⁄ exp (−𝜆)    ( 4.21 ) 

𝜂 = 𝜆 𝜇⁄ = 𝜆𝐸(𝑇𝑇)     ( 4.22 ) 

From the PASTA (Poisson Arrivals See Time Averages) property of Poisson distributed 

arrivals, it can be said that the probability of finding the system in a given state is equal to the 

fraction of time spent in that state. Without going into the full derivation (see Adan & Resing, 

2001), this allows us to represent the probability of finding the system in state n at any given time 

as a Poisson probability as shown in Equation 4.23, where 𝜂 = 𝜆 𝜇⁄  as before: 

𝑝𝑛 = 𝜂
𝑛 (𝑛!)⁄ exp (−𝜂)     ( 4.23 ) 

This gives an expression for the Poisson PMF that describes the number of vehicles in the system 

at any given time, but the objective is to estimate the total number in the system over an observation 

interval. To do this, we can express the probability of a vehicle being present within an observation 

interval as the sum over two time periods; first, the number remaining in the system at the start of 

the observation interval (Equation 4.23), and second the number arriving over the observation 
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interval (Equation ( 4.21). TI+E(TT) is simply the time length of the observation interval plus the 

expected travel time. Thus, the expected number of users is simply the number of arrivals over the 

time (expected travel time + observation interval). The distribution for the total number of vehicles 

appearing in the system over a single observation interval is as shown in Equation 4.24, and the 

expected number of arrivals a shown in Equation 4.25.  

𝑃(𝑛|𝜆, 𝐸(𝑇𝑇)) = (𝜆(𝑇𝐼 + 𝐸(𝑇𝑇)))𝑛 (𝑛!)⁄ 𝑒𝑥𝑝[−𝜆(𝑇𝐼 + 𝐸(𝑇𝑇))]   ( 4.24 ) 

𝐸(𝑛|𝜆, 𝐸(𝑇𝑇)) = 𝜆(𝑇𝐼 + 𝐸(𝑇𝑇)).   ( 4.25 ) 

These expressions can describe the number of vehicles appearing for a single subpopulation by 

replacing the arriving volume and expected travel time with the values for that subpopulation, as 

shown in Equation 4.26. This gives a form for the vehicle count distribution PMF 𝑞𝑁𝑖(𝑛) described 

in the Section 4.1, which becomes a Poisson PMF with parameter (𝑇𝐼 + 𝐸(𝑇𝑇𝑖)). 

𝑞𝑁𝑖(𝑛|𝜆𝑖, 𝐸(𝑇𝑇𝑖)) = (𝜆𝑖(𝑇𝐼 + 𝐸(𝑇𝑇𝑖)))
𝑛 (𝑛!)⁄ 𝑒𝑥𝑝[−𝜆𝑖(𝑇𝐼 + 𝐸(𝑇𝑇𝑖))]       ( 4.26 ) 

4.2.2 Sample Count Estimation 

With the PMF for the number of vehicles appearing in the system over an observation interval, it 

remains to consider sampling frequency and the corresponding sample count distribution. 

Assuming uniform arrivals over the time period 𝑇𝐼 + 𝐸(𝑇𝑇) (which is true in general for a Poisson 

process), the integral shown in Equation 5.2 makes it possible to provide a specific form for 

Equations 4.4 and 4.5, as well as other related expressions described in the previous section.  

Using the function 𝑡(𝑥, 𝑇𝑇) shown as Equation 6.1 and illustrated in Figure 4-1, it is possible to 

describe the number of samples obtained for a single vehicle as a categorical distribution 

conditioned on travel time and sampling interval.  
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To solve the integral of this distribution over arrival time x, note that the distribution of 

arrival times is uniform and therefor a constant equal to 
1

𝑇𝐼+𝑇𝑇
 (this follows from the Poisson 

distribution). Combining this knowledge with area formulas for the geometry of an Isosceles 

trapezoid, the distribution of the number of samples obtained can be described by the categorical 

distribution shown in Equation 4.27. In these formulas, 𝑎%𝑏 indicates “𝑎 𝑚𝑜𝑑𝑢𝑙𝑜 𝑏” or the 

remainder of the integer division 𝑎/𝑏. 𝑓𝑙𝑜𝑜𝑟(𝑦) indicates the floor function or the largest integer 

less than or equal to y, and 𝑐𝑒𝑖𝑙(𝑦) indicates the ceiling function or the smallest integer greater 

than or equal to y.  

 

𝑃(𝑛𝑠𝑝𝑣 = 𝑗|𝑇𝑇, 𝑠𝑟) =

{
 
 
 
 

 
 
 
 
1 − 𝑆1              𝑖𝑓                                                                𝑗 = 0

2 × 𝑠𝑟

𝑇𝐼 + 𝑇𝑇
             𝑖𝑓                   0 <  𝑗 < 𝑓𝑙𝑜𝑜𝑟 (

min(𝑇𝑇, 𝑇𝐼)

𝑠𝑟
)

𝑆2 − 𝑆3

𝑠𝑟 × (𝑇𝐼 + 𝑇𝑇)
𝑖𝑓                            𝑗 = 𝑓𝑙𝑜𝑜𝑟 (

min(𝑇𝑇, 𝑇𝐼)

𝑠𝑟
)

𝑆3

𝑠𝑟 × (𝑇𝐼 + 𝑇𝑇)
𝑖𝑓  

min(𝑇𝑇, 𝑇𝐼)

𝑠𝑟
< 𝑗 < 𝑐𝑒𝑖𝑙 (

min(𝑇𝑇, 𝑇𝐼)

𝑠𝑟
)

0                          𝑒𝑙𝑠𝑒                                                                        

 ( 4. 27 ) 

Where S1, S2, and S3 are defined as shown in Equations x, x, and x.  

𝑆1 =
(𝑇𝐼 + 𝑇𝑇)min(𝑠𝑟, 𝑇𝐼, 𝑇𝑇) − min(𝑠𝑟, 𝑇𝐼, 𝑇𝑇)2

(𝑇𝐼 + 𝑇𝑇)𝑠𝑟
                   ( 4. 28 ) 

𝑆2 = 𝑠𝑟 × (𝑇𝐼 + 𝑇𝑇 − 2 × 𝑓𝑙𝑜𝑜𝑟 (
min(𝑇𝑇, 𝑇𝐼)

𝑠𝑟
) × 𝑠𝑟 + 𝑠𝑟)            ( 4. 29 ) 

𝑆3 = (min(𝑇𝑇, 𝑇𝐼)%𝑠𝑟) × (𝑇𝐼 + 𝑇𝑇 − 2 ×min(𝑇𝑇, 𝑇𝐼) + (min(𝑇𝑇, 𝑇𝐼)%𝑠𝑟)) ( 4. 30 ) 

This expression can be combined with Equation 4.4 to compute the overall probability of a given 

number of samples for a single subpopulation i given only 𝑠𝑟𝑖. Substituting Equation 4.27 as the 

expression for 𝑃(𝑛𝑠𝑝𝑣𝑖 = 𝑗|𝑇𝑇(𝑣), 𝑠𝑟𝑖) in Equation 4.4 gives a formula for the distribution of the 

number of samples obtained per vehicle conditioned only on the sampling interval.  



www.manaraa.com

 

 

47 

Some simplifications can be made to Equation 4.27 to derive expressions for the expected 

number of samples and the probability of observing a vehicle given it has arrived. First, as noted 

previously, the expected number of samples for a given x and TT is simply the value of the function 

𝑡(𝑥, 𝑇𝑇) divided by sr. From this, a trapezoidal area formula can be used to compute the expected 

number of samples per vehicle (nspv) given TT and sr as shown in Equation 4.31. This formula 

can be combined with Equation 4.5 to compute the expected number of samples per vehicle for 

each subpopulation given only 𝑠𝑟𝑖 and the speed distribution 𝑓𝑉𝑖(𝑣), resulting in Equation 4.32.  

𝐸(𝑛𝑠𝑝𝑣|𝑇𝑇, 𝑠𝑟) =
(𝑇𝐼 + 𝑇𝑇)min(𝑇𝐼, 𝑇𝑇) − min(𝑇𝐼, 𝑇𝑇)2

(𝑇𝐼 + 𝑇𝑇)𝑠𝑟
                   ( 4. 31 ) 

𝐸(𝑛𝑠𝑝𝑣𝑖|𝑠𝑟𝑖) = ∫
(𝑇𝐼 + 𝑇𝑇(𝑣))min(𝑇𝐼, 𝑇𝑇(𝑣)) − min(𝑇𝐼, 𝑇𝑇(𝑣))

2

(𝑇𝐼 + 𝑇𝑇(𝑣))𝑠𝑟𝑖
𝑓𝑉𝑖(𝑣)𝑑𝑣

𝑣

  ( 4. 32 ) 

Finally, to get the distribution of the total number of samples over all possible vehicles, Equations 

4.4, 4.6, and 4.27, are combined to give the expression shown as Equation 4.33. 

𝑃(𝑛𝑠𝑖|𝑠𝑟𝑖, 𝜆𝑖, 𝐸(𝑇𝑇𝑖)) =∑[𝑞𝑁𝑖(𝑛|𝜆𝑖, 𝐸(𝑇𝑇𝑖)) ∑ (∏𝑃(𝑛𝑠𝑝𝑣𝑖 = 𝑗|𝑠𝑟𝑖)

𝑗∈𝑚

)

𝑚∈𝐶𝑛𝑠𝑖,𝑛

]

𝑛

( 4. 33 ) 

The corresponding expected value expression is shown as Equation 4.34, which combines the 

Poisson expected number of vehicles with the expected number of samples per vehicle from 

Equation 4.32. 

𝐸(𝑛𝑠𝑖|𝑠𝑟𝑖, 𝜆𝑖 , 𝐸(𝑇𝑇𝑖)) = 𝜆𝑖(𝑇𝐼 + 𝐸(𝑇𝑇𝑖) × 𝐸(𝑛𝑠𝑝𝑣𝑖|𝑠𝑟𝑖)                 ( 4. 34 ) 

From these expressions, it is possible to compute the expected number of samples over all 

subpopulations, the missing data probability, and the expected observed speed by substituting 

these expressions into the formulas described in the previous section.  



www.manaraa.com

 

 

48 

4.2.3 Considering Heterogeneous Vehicle Populations 

In many cases, significant variation will be present in the sampling parameters and speed 

distributions over different vehicle subpopulations. As noted previously, the total observable 

vehicle volume can be interpreted as arising from a set of k distinct subpopulations, each with a 

fixed value of 𝑠𝑟 and speed distribution. Under this interpretation, observable vehicles are drawn 

from a categorical distribution, where each category i is associated with a fixed value of 𝑠𝑟𝑖 and 

speed distribution 𝑓𝑉𝑖(𝑣). 

𝑠𝑟𝑖, 𝑓𝑉𝑖(𝑣)~𝐶𝑎𝑡(𝑘, 𝜋)      ( 4.35 ) 

Where 𝜋𝑖 , 𝑖 ∈ {1,2, … , 𝑘} is the parameter vector for the categorical distribution, each i associated 

with a distinct subpopulation. In words, 𝜋𝑖 is the probability of a single randomly selected vehicle 

belonging to subpopulation i, given that it is a member of an observable subpopulation. Thus, for 

each subpopulation 𝑖, the arriving vehicle volume can be expressed as the product of the overall 

observable vehicle volume and the associated distribution parameter 𝜋𝑖.  

𝜆𝑖 = 𝑄 × 𝑓𝑟𝑎𝑐 × 𝜋𝑖                                                      ( 4. 36 ) 

In this expression, 𝑓𝑟𝑎𝑐 indicates the total penetration rate, or the overall penetration rate of probe 

vehicles considering all subpopulations. 𝑄 indicates the total arriving vehicle volume, in units of 

vehicles per observation interval. As before, the arriving vehicle volume 𝜆𝑖 can be used to calculate 

the Poisson parameter describing the expected value and variance for the observable vehicle count 

for subpopulation i appearing in the system during an observation interval.  

𝐸(𝑛𝑖) = 𝜆𝑖(𝑇𝐼 + 𝐸(𝑇𝑇𝑖))     ( 4.37 ) 

The total expected number of observable vehicles appearing in the system in an observation 

interval can then be expressed as shown in Equation 4.38.  

𝐸(𝑛) = ∑ 𝜆𝑖(𝑇𝐼 + 𝐸(𝑇𝑇𝑖)) = ∑ 𝐸(𝑛𝑖)
𝑘
𝑖=1

𝑘
𝑖=1     ( 4.38 ) 
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There are no specific constraints on the subpopulation speed distributions, except that they 

faithfully represent the true (not measured) distribution of vehicle mean speeds across the road 

section of interest. However, in most cases the speed distributions for all subpopulations will be in 

the same family, and so will be defined by the distribution parameters. For example, if the speed 

distributions are all assumed to be lognormal, the speed distribution 𝑓𝑉𝑖(𝑣) will be defined as 

shown in Equation 4.39. In this expression, 𝜇𝑣𝑚𝑖
 and 𝜎𝑣𝑚𝑖

 are the lognormal distribution 

parameters, or the location and scale parameters for the normally distributed natural log of mean 

vehicle speed.  

𝑓𝑉𝑖(𝑣) = 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝑣𝑚𝑖
, 𝜎𝑣𝑚𝑖

2 )                                          ( 4. 39 ) 

Note that 𝑓𝑉𝑖(𝑣) describes the distribution of mean vehicle speeds for subpopulation i, so 𝜎𝑣𝑚𝑖

2  is 

distinct from 𝜎𝑣𝑖
2 , which describes the variance of a single vehicle’s speed along a road segment 

given the mean. Some estimate of 𝜎𝑣𝑖
2  is required to estimate the variance in the observed speed 

measurement. In simulation, this quantity can be estimated by first calculating the variance of each 

vehicle’s speed across a road segment within a single observation interval, and then taking the 

subpopulation-wise mean of the variance (this is how it is done in Section Chapter 5:). In practical 

applications, there are a variety of ways this quantity could be estimated. For example, if speed 

sensing hardware is placed along a road segment, it may be simpler to estimate 𝜎𝑣𝑖
2  from a synthetic 

speed profile based on measurements from this hardware.  

4.3 Methodology 

The formulas presented in Sections 4.1 and 4.2 make some assumptions about what is known, and 

what can be known, about the true traffic state and sampling parameters. That is, estimating the 

distribution of the observed speed and sample sizes requires that the sampling interval, speed 
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distribution, and contributing fraction of all subpopulations are known or can be estimated for the 

location(s) and time period(s) of interest. In this form, the proposed framework would be useful in 

planning new data collection efforts to minimize the bias and/or variance in the observed speed 

and achieve some minimum sample size, or in evaluating the quality of existing probe vehicle data. 

For example, one could estimate the true speed distribution for a range of traffic conditions using 

mechanical sensor data and apply the methodology to prescribe a minimum penetration rate or 

sampling frequency distribution to meet data quality requirements.  

Another likely objective would be to estimate the true speed and corresponding sampling 

bias given the observed speed and sampling parameters. This is more challenging. On one hand, 

computing the overall sampling bias from these quantities would be feasible. However, at present 

this would not be very useful for correcting sampling bias in probe vehicle data. Consider that, 

especially at low penetration rates, the error or difference between the true traffic speed and the 

observed speed is comprised of two components: 1) random and 2) systematic. Random error is 

driven by the fact that the measured data is derived from a small number of vehicles relative to the 

total population, and is based on relatively sparse point measurements. Systematic error is driven 

by the extent to which the sampling parameters systematically give higher weight to certain vehicle 

subpopulations and travel speeds. As the overall penetration rate increases, the random component 

decreases relative to the systematic component as else being equal. Thus, at low penetration rates, 

the bias is small relative to the random error and adjusting for it using some form of correction 

factor could have deleterious impacts on the accuracy of the data. As the penetration rate increases 

and systematic error increasingly dominates, a correction factor becomes a more feasible solution.  

In this work, two possible implementation scenarios are considered. First, the case where 

the true speed distribution(s) and sampling parameters are known (or can be estimated) for all 
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vehicle subpopulations, and the objective is to estimate the completeness, observed speed or 

sampling bias, and sample sizes. This would be the most likely case for planning a future data 

collection project. In the second case, only the observed speeds and sampling parameters are 

known, and the objective is to correct for sampling bias. As noted previously, correcting for bias 

is difficult when the number of contributing vehicles is small and random error is high relative to 

systematic error. For this reason, implementing such a methodology is discussed in detail in a 

separate part of this dissertation (Chapter 6.3). 

4.3.1 Parameter Definitions 

This subsection explains how to apply the proposed methodology to estimate sample sizes, missing 

data rates, and observed speed, focusing on the Poisson arrival case described in Section 4.2. It is 

assumed here that the probe vehicle population consists of k non-overlapping subpopulations, each 

with a fixed penetration rate and distinct combination of sampling interval and speed distribution. 

Listed below are the parameters needed to estimate statistical measures describing sample size, 

missing data rate, and observed speed. These quantities define an analysis scenario.  

Probe Vehicle Population Parameters: 

 Overall Penetration Rate (𝑓𝑟𝑎𝑐): this is the fraction of the total vehicle population that is 

contributing to the probe vehicle dataset. For multiple non-overlapping subpopulations, it 

is the sum penetration rate over all subpopulations. If the intent is to investigate the impact 

of different penetration rates on sample sizes and/or bias, this value can be adjusted over a 

grid of values.  

 Subpopulation Fractions (𝜋𝑖   {𝑖 ∈ 1,2, … , 𝑘}): This is the fraction of the overall probe 

vehicle population the comprises each vehicle subpopulation. In other words, the expected 

observable traffic volume for each subpopulation i is the product of the total vehicle 
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volume (Q), the overall penetration rate (𝑓𝑟𝑎𝑐), and the fraction associated with the 

subpopulation of interest (𝜋𝑖).  

Traffic Parameters: 

 True Mean Speed Distribution (𝑓𝑉𝑖(𝑣)   {𝑖 ∈ 1,2, … , 𝑘}): This is the distribution of the true 

per-vehicle mean speed for each subpopulation. For a parametric distribution family, it is 

defined by a set of distribution parameters for each subpopulation. For example, a plausible 

assumption would be that the mean speed is normally distributed. In a microscopic traffic 

simulation scenario, the distribution parameters (mean and variance) can be computed by 

first computing the per-vehicle mean speed for all vehicles, and then computing the mean 

and variance of this speed over all vehicles. For a hypothetical real-world scenario, this 

quantity can be estimated from existing mechanical sensor data or based on prior research.  

 True Expected Travel Time (𝐸(𝑇𝑇𝑖)   {𝑖 ∈ 1,2, … , 𝑘}): This is the expected travel time for 

each vehicle subpopulation. It can be computed from the mean speed distribution 𝑓𝑉𝑖(𝑣) 

and the road segment length L.  

 Traffic Volume (Q): This is the traffic volume for the scenario of interest, including all 

vehicles (not just probe vehicles). 

 Speed Variance Along the Road Segment (𝜎𝑣𝑖
2    {𝑖 ∈ 1,2, … , 𝑘}): This is an estimate of the 

variance of a single vehicle’s speed along the road segment of interest. It does not include 

the between-vehicle variance of the mean, only the variance along the route for a single 

vehicle. In this work, this quantity is estimated by first computing the per-vehicle variance 

for all vehicles within each observation interval, and then taking the mean of per-vehicle 

variance over each subpopulation. This would underestimate the effective variance due to 
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autocorrelation, so the observed data is down-sampled to match the according to the 

sampling frequency.  

Probe Vehicle Sampling Parameters: 

 Sampling Interval (𝑠𝑟𝑖   {𝑖 ∈ 1,2, … , 𝑘}): The sampling interval is the length of time 

between subsequent vehicle state updates for each subpopulation. If the intent is to 

investigate the impact of different sampling interval distributions, one could consider 

multiple sampling interval distributions (defined by a combination of subpopulation 

fractions and associated sampling intervals) to investigate the impact on sample sizes, 

missing data rates, and sampling bias.  

 Observation Interval (TI): This is the length of time over which individual vehicle state 

updates are aggregated to discrete time traffic observations. Multiple observation interval 

lengths may be tested to investigate the impact on sample sizes, missing data rates, and 

sampling bias.  

Site Parameters: 

 Road Segment Length (L): This is simply the length of the road segment. It is needed to 

make the conversion between vehicle speeds and travel times.  

4.3.2 Analytical Approach 

This first approach applies the formulas described in previous sections to analytically compute the 

observed speed, sample size, and missing data rate. This approach will more straight forward 

compared to the sampling method described in the following subsection, but it is less flexible and 

in general cannot be used to estimate the full distribution of the observed speed. To explain, the 

distribution of the observed speed will depend on the method used to combine point vehicle 

updates into aggregate measures for each road segment and time period. If pointwise updates are 
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first aggregated to a single speed value for each vehicle, and these vehicle speeds are averaged for 

each road segment and time period, then an analytical solution for the expected observed speed is 

possible. If the simple average of pointwise updates for each time period and road segment are 

used, then sampling methods will be required to estimate the distribution of the observed speeds. 

Furthermore, as noted previously, sampling methods will be the most efficient way to estimate the 

variance of the observed speed when multiple probe vehicle subpopulations are present.  

 The following steps describe the process for estimating sample size distributions, missing 

data rates, and expected observed speed. Expected observed speed estimation is described for the 

case when pointwise updates are first aggregated to a single speed value for each vehicle, and these 

vehicle speeds are averaged for each road segment and time period (sample sizes and missing data 

rates do not depend on the speed aggregation method). 

1) Estimate the arriving volume for each subpopulation using Equation 4.36: 

𝑓𝑜𝑟 𝑖 ∈ {1,2, … , 𝑘}: 

𝜆𝑖 = 𝑄 × 𝑓𝑟𝑎𝑐 × 𝜋𝑖 

2) Compute the expected travel time for each subpopulation using the road segment length 

and mean vehicle speed distribution. In most cases, numerical methods will be required to integrate 

over the full support for 𝑓𝑣𝑖(𝑣). For the lognormal case described in Section 4.2.3, this can be 

represented as: 

𝑓𝑜𝑟 𝑖 ∈ {1,2, … , 𝑘}: 

𝐸(𝑇𝑇𝑖) = ∫
𝐿

𝑣
× 𝑓𝑣𝑖(𝑣)𝑑𝑣

𝑣

= ∫
𝐿

𝑣
[

1

𝑣 × 𝜎𝑚𝑣,𝑖√2𝜋
𝑒

(ln(𝑣)−𝜇𝑚𝑣,𝑖)
2

2𝜎𝑚𝑣,𝑖
2

] 𝑑𝑣

𝑣
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3) The full distribution of the number of samples per vehicle for each subpopulation can be 

estimated using Equations 4.4 and 4.27. In most cases, numerical methods will be required to 

integrate over the full support for 𝑓𝑣𝑖(𝑣). For the Lognormal case, this can be represented as: 

𝑓𝑜𝑟 𝑖 ∈ {1,2, … , 𝑘}: 

𝑓𝑣𝑖(𝑣) =
1

𝑣 × 𝜎𝑚𝑣,𝑖√2𝜋
𝑒

(ln(𝑣)−𝜇𝑚𝑣,𝑖)
2

2𝜎𝑚𝑣,𝑖
2

 

𝑓𝑜𝑟 𝑗 ∈ {0,1, … ,∞}: 

𝑃(𝑛𝑠𝑝𝑣𝑖 = 𝑗|𝑠𝑟𝑖) = ∫ 𝑃(𝑛𝑠𝑝𝑣𝑖 = 𝑗|𝑇𝑇(𝑣), 𝑠𝑟𝑖)𝑓𝑣𝑖(𝑣)𝑑𝑣

𝑣

 

4) The expected sample size (𝑛𝑠𝑖) for each subpopulation can be estimated using previously 

described results along with Equations 4.32 and 4.34. In most cases, numerical methods will be 

required to integrate over the full support for 𝑓𝑣𝑖(𝑣). For the Lognormal case, this can be 

represented as: 

𝑓𝑜𝑟 𝑖 ∈ {1,2, … , 𝑘}: 

𝑓𝑣𝑖(𝑣) =
1

𝑣 × 𝜎𝑚𝑣,𝑖√2𝜋
𝑒

(ln(𝑣)−𝜇𝑚𝑣,𝑖)
2

2𝜎𝑚𝑣,𝑖
2

 

𝐸(𝑛𝑠𝑝𝑣𝑖|𝑠𝑟𝑖) = ∫
(𝑇𝐼 + 𝑇𝑇(𝑣))min(𝑇𝐼, 𝑇𝑇(𝑣)) − min(𝑇𝐼, 𝑇𝑇(𝑣))

2

(𝑇𝐼 + 𝑇𝑇(𝑣))𝑠𝑟𝑖
𝑓𝑣𝑖(𝑣)𝑑𝑣

𝑣

 

𝐸(𝑛𝑠𝑖|𝑠𝑟𝑖 , 𝜆𝑖 , 𝐸(𝑇𝑇𝑖)) = 𝜆𝑖(𝑇𝐼 + 𝐸(𝑇𝑇𝑖) × 𝐸(𝑛𝑠𝑝𝑣𝑖|𝑠𝑟𝑖)  

5) The full sample size distribution for each subpopulation can be estimated using previously 

described results along with Equations 4.4, 4.6, 4.26, and 4.27. For the Poisson case, this can be 

described as shown here, where 𝐶𝑙,𝑛 indicates the weak composition of 𝑙 or the set of all possible 

integer tuples of length n which sum to 𝑙. 
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𝑓𝑜𝑟 𝑖 ∈ {1,2, … , 𝑘}: 

𝑞𝑁𝑖(𝑛) =
[𝜆𝑖(𝑇𝐼 + 𝐸(𝑇𝑇𝑖))]

𝑛
𝑒𝜆𝑖(𝑇𝐼+𝐸(𝑇𝑇𝑖))

𝑛!
 

𝑓𝑜𝑟 𝑙 ∈ {0,1, … ,∞}: 

𝑃(𝑛𝑠𝑖 = 𝑙|𝑐, 𝑠𝑟𝑖) =

{
 
 

 
 
∑ (∏𝑃(𝑛𝑠𝑝𝑣𝑖 = 𝑗|𝑠𝑟𝑖)

𝑗∈𝑚

)

𝑚∈𝐶𝑙,𝑐

𝑖𝑓 𝑛 > 0

1          𝑖𝑓 𝑙 = 𝑛 = 0 
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑃(𝑛𝑠𝑖 = 𝑙|𝑠𝑟𝑖, 𝜆𝑖 , 𝐸(𝑇𝑇𝑖)) =∑[𝑞𝑁𝑖(𝑐)𝑃(𝑛𝑠𝑖 = 𝑙|𝑐, 𝑠𝑟𝑖)]

∞

𝑐=0

 

6) The full sample size distribution over all subpopulations can be estimated using previously 

described results along with Equation 4.8 as shown here: 

𝑃(𝑛𝑠𝑎𝑙𝑙 = 𝑠|𝑠𝑟) = ∑ [ ∏ 𝑃(𝑛𝑠𝑖 = 𝑚𝑖|𝑠𝑟𝑖, 𝜆𝑖 , 𝐸(𝑇𝑇𝑖))

𝑖∈{1,2,…,𝑘}

]

𝑚∈𝐶𝑠,𝑘

 

7) The expected observed speed for each subpopulation can be estimated using Equations 

4.39, 4.27, and 4.12. For the Lognormal/Poisson case, this can be shown as follows, where again 

the integral over 𝑣 is likely to require numerical integration: 

𝑓𝑜𝑟 𝑖 ∈ {1,2, … , 𝑘}: 

𝑓𝑣𝑖(𝑣) =
1

𝑣 × 𝜎𝑚𝑣,𝑖√2𝜋
𝑒

(ln(𝑣)−𝜇𝑚𝑣,𝑖)
2

2𝜎𝑚𝑣,𝑖
2

 

𝑃(𝑛𝑠𝑝𝑣𝑖 > 0|𝑇𝑇(𝑣), 𝑠𝑟𝑖)

=
(𝑇𝐼 + 𝑇𝑇(𝑣))min(𝑠𝑟𝑖, 𝑇𝐼, 𝑇𝑇(𝑣)) − min(𝑠𝑟𝑖, 𝑇𝐼, 𝑇𝑇(𝑣))

2

(𝑇𝐼 + 𝑇𝑇(𝑣))𝑠𝑟𝑖
 

𝐸(𝑣𝑜𝑏𝑠,𝑖|𝑠𝑟𝑖) =
∫ 𝑣 × 𝑓𝑣𝑖(𝑣) × 𝑃(𝑛𝑠𝑝𝑣𝑖 > 0|𝑇𝑇(𝑣), 𝑠𝑟𝑖)𝑑𝑣𝑣

∫ 𝑓𝑣𝑖(𝑣) × 𝑃(𝑛𝑠𝑝𝑣𝑖 > 0|𝑇𝑇(𝑣), 𝑠𝑟𝑖)𝑑𝑣𝑣
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8) The expected observed mean speed over all subpopulations can be calculated using 

previously described results along with Equations 4.13 and 4.17 as shown here: 

𝑓𝑜𝑟 𝑖 ∈ {1,2, … , 𝑘}: 

𝑀𝑖 = 𝜆𝑖(𝑇𝐼 + 𝐸(𝑇𝑇𝑖)) × (1 − 𝑃(𝑛𝑠𝑝𝑣𝑖 = 0|𝑠𝑟𝑖)) 

𝐸(�̅�𝑜𝑏𝑠|𝑠𝑟) =
∑ 𝑀𝑖 × 𝐸(𝑣𝑜𝑏𝑠,𝑖|𝑠𝑟𝑖)𝑖∈{1,2,…,𝑘}

∑ 𝑀𝑖𝑖∈{1,2,…,𝑘}
 

In this work, this process is implemented using the Python programing language. Using widely 

available open source statistical and numerical integration libraries, computation time for a single 

scenario is on the order of a few seconds. 

4.3.3 Sampling Approach 

To estimate the distribution of the observed speed when the average of all point speed observations 

is taken as the observed speed, it is necessary to use sampling methods. Actually, sampling is a 

much more general approach that can be used to estimate the full distribution of the observed speed 

under a variety of aggregation methods. The problem can be represented graphically as shown in 

Figure 4-3, and allows forward sampling to generate samples from the posterior distributions of 

interest. The shaded circles represent observed quantities, the non-shaded circles represent 

unobserved variables, and the wide bordered squares indicate repeated variables or groups of 

variables. For example, there are k values for 𝑛𝑖 and ∑ 𝑛𝑖∈{1,2,…,𝑘} 𝑖
 values for 𝑣𝑖,𝑐 and 𝑛𝑠𝑝𝑣𝑖,𝑐. The 

representation in Figure 4-3 is somewhat of an abuse of graphical notation because the number of 

vehicles and the number of samples per vehicle are themselves random variables (rather than fixed 

values, which is customary for the use of plate notation in graphical model representation). Some 

methods to depict directed graphical models with variable numbers of nodes have been introduced 
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such as (Mjolsness 2004). However, there is no widely accepted notation for this, and so the 

standard plate notation was adapted to the task. 

 

Figure 4-3: Directed Graphical Model Representation 

Forward sampling can be used to derive empirical estimates of the expected value, variance, and 

other measures. To obtain a single sample representing an aggregate speed measurement for a 

single time period, the following steps are completed. 

9) Draw vehicle counts for each subpopulation 𝑖 ∈ (0,1, … , 𝑘} from the corresponding PDF 

𝑞𝑁𝑖(𝑛). For the Poisson case described in Section 4.2.1, this can be represented as: 

𝑓𝑜𝑟 𝑖 ∈ {1,2, … , 𝑘}: 

𝑛𝑖~𝑃𝑜𝑖𝑠 (𝜆𝑖(𝑇𝐼 + 𝐸(𝑇𝑇𝑖))) 
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10) For each vehicle c in each subpopulation i, draw a mean speed 𝑣𝑖,𝑐 from the distribution 

𝑓𝑉𝑖(𝑣). For the lognormal case described in Section 4.2.3, this can be represented as: 

𝑓𝑜𝑟 𝑖 ∈ {1,2, … , 𝑘}: 

𝑓𝑜𝑟 𝑐 ∈ {1,2, … 𝑛𝑖}: 

𝑣𝑖,𝑐~𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝑣𝑚𝑖
, 𝜎𝑣𝑚𝑖

2 )     

11) For each vehicle c in each subpopulation i,, draw a sample count 𝑛𝑠𝑝𝑣𝑖,𝑐 from the 

categorical distribution defined by Equation 4.27.  

𝑓𝑜𝑟 𝑖 ∈ {1,2, … , 𝑘}: 

𝑓𝑜𝑟 𝑐 ∈ {1,2, … 𝑛𝑖}: 

𝑛𝑠𝑝𝑣𝑖,𝑐~𝑃(𝑛𝑠𝑝𝑣𝑖|𝑇𝑇(𝑣𝑖,𝑐), 𝑠𝑟𝑖) 

12) For each sample m for vehicle c in each subpopulation i, draw an observed speed using the 

previously sampled mean 𝑣𝑖,𝑐 and variance 𝜎𝑣𝑖. Any continuous distribution that can be 

parameterized by the mean and variance can be used, here it is shown as a Normal distribution. 

Note that measurement errors can be incorporated into this step by applying a second sampling 

step, which considers the variance in the measured speed given the true speed (𝑣𝑖,𝑐,𝑗). 

𝑓𝑜𝑟 𝑖 ∈ {1,2, … , 𝑘}: 

𝑓𝑜𝑟 𝑐 ∈ {1,2, … 𝑛𝑖}: 

𝑓𝑜𝑟 𝑗 ∈ {1,2, … , 𝑛𝑠𝑝𝑣𝑖,𝑐}: 

𝑣𝑖,𝑐,𝑗~𝑁𝑜𝑟𝑚𝑎𝑙(𝑣𝑖,𝑐, 𝜎𝑣𝑖
2 ) 
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13) Aggregate the speed of all vehicles according to the desired aggregation method, resulting 

in a single observation for travel speed or travel time across the road segment. If the simple mean 

of all point vehicle state updates is taken as the observed value, the formula shown as Equation 

4.40 can be used. Alternatively, if the per-vehicle mean is taken first, and the mean of per-vehicle 

speed is taken as the observed value, Equation 4.41 can be used.  

�̅�𝑜𝑏𝑠 =
1

∑ [∑ 𝑛𝑠𝑝𝑣𝑖,𝑐
𝑛𝑖
𝑐=1 ]𝑘

𝑖=1

∑[∑( ∑ 𝑣𝑖,𝑐,𝑗

𝑛𝑠𝑝𝑣𝑖,𝑐

𝑗=1

)

𝑛𝑖

𝑐=1

]                      ( 

𝑘

𝑖=1

4. 40 ) 

�̅�𝑜𝑏𝑠 =
1

∑ 𝑛𝑖
𝑘
𝑖=1

∑[∑(
1

𝑛𝑠𝑝𝑣𝑖,𝑐
∑ 𝑣𝑖,𝑐,𝑗

𝑛𝑠𝑝𝑣𝑖,𝑐

𝑗=1

)

𝑛𝑖

𝑐=1

]                    

𝑘

𝑖=1

      ( 4. 41 ) 

This sampling is completed many times, and the results combined to provide estimates of the 

desired quantities including expected value, variance, empirical quantiles, etc. In addition to speed, 

other quantities of interest such as the vehicle and sample counts, missing data rate, and associated 

statistical measures can be found by aggregating the assignment of the variable of interest over all 

samples generated in this process. For example, indexing the samples by 𝑡 ∈ {1,2, …𝑇} with a total 

sample count of 𝑇, the expected missing data rate can be computed as shown in Equation 4.42. 

𝑃(𝑅 = 0) =
∑ 𝐼𝑅𝑡=0
𝑇
𝑡=1

𝑇
                                                     ( 4. 42 ) 

Where 𝐼𝑅𝑡=0 is an indicator variable taking the value 1 if [∑ (∑ 𝑛𝑠𝑝𝑣𝑖,𝑐
𝑛𝑖
𝑐=1 )𝑘

𝑖=1 ]
𝑡
= 0 and 0 

otherwise. Similarly, the expected number of observed vehicles 𝐸(𝑛𝑜𝑏𝑠) and Expected number of 

samples 𝐸(𝑛𝑠) per observation interval can be computer as shown in Equations 4.43 and 4.44, 

respectively, where 𝐼𝑛𝑠𝑝𝑣𝑖,𝑐>0 is an indicator variable taking the value 1 if 𝑛𝑠𝑝𝑣𝑖,𝑐 > 0 and 0 

otherwise. 
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𝐸(𝑛𝑜𝑏𝑠) =
1

𝑇
∑[∑(∑𝐼𝑛𝑠𝑝𝑣𝑖,𝑐>0

𝑛𝑖

𝑐=1

)

𝑘

𝑖=1

]

𝑡

  

𝑇

𝑡=1

                               ( 4. 43 ) 

𝐸(𝑛𝑠) =
1

𝑇
∑[∑(∑𝑛𝑠𝑝𝑣𝑖,𝑐

𝑛𝑖

𝑐=1

)

𝑘

𝑖=1

]

𝑡

  

𝑇

𝑡=1

                                 ( 4. 44 ) 
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Chapter 5: Validation 

5.1 Experimental Set up 

The validation work described here supposes that, if the model accurately represents the 

underlying sampling process, then the predicted speed, completeness, and sample size should agree 

with the results obtained using microscopic traffic simulation. The proposed model is designed to 

represent the sampling process based on aggregate quantities (mean and variance of speed, mean 

arriving volume, mean penetration rate, etc.), and describe the outcome in terms of link-level 

averages over a reasonably large set of observation intervals. Thus, the validation should be based 

on mean speed and between – observation interval speed variance, mean completeness, and mean 

vehicle count and sample size. To do this, a series of simulations were completed using PTV’s 

VISSIM microscopic traffic simulation software. A location on Interstate 5 in the north Seattle, 

WA area was selected for the simulation. A mode was constructed with 6 adjoining road links, all 

with a fixed speed limit of 60 mph and four traffic lanes in the northbound direction. A single lane 

slowdown section was added in link 7 to introduce some heterogeneity in traffic conditions. Table 

5-1 shows the link lengths and ID numbers.  

Figure 5-1 shows the location from which the test scenario was adapted. There are some 

differences between the Interstate 5 site and the simulation model, this location was selected 

simply as an example of a basic freeway section. No on or off ramps were used in the test scenario, 

and all links were designed with 4 mainline lanes (ignoring HOV lanes). By allowing multiple 

vehicle subpopulations, HOVs are considered implicitly, so including the HOV lanes would not 

introduce any additional complexity. Allowing a significant number of vehicles to enter and exit 
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the traffic stream along a link would also be straightforward, but was not considered in this 

experiment.  

Table 5-1: VISSIM Model Road Link Definitions 

Link ID Length (miles) 

1 0.325 

3 0.097 

4 0.226 

6 0.155 

7 0.526 

9 0.870 

 

Figure 5-1: Location of Test Site 
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In all cases, the simulation model is run for 10080 seconds for each of five random seed 

values (42, 43, 44, 45, and 46). With the output of each simulation run, vehicles are selected at 

random according to the selected penetration rate, and assigned to a sampling rate using a draw 

from the multinomial distribution for sr. The measured speed, true speed (over all vehicles), 

sample count, and missing data rate are then computed for each roadway link. The vehicle selection 

is completed 50 times for each simulation run, and results combined over all simulation runs and 

vehicle assignments. The first 5 minutes of each simulation run is discarded, in order to insure that 

all road links are populated before data collected begins. 

The simulated scenario was roughly adapted from the probe data described in (Patire et al. 

2015) which describes the sampling rate distribution and penetration rate for two real-world probe 

vehicle datasets. The first provider, here referred to as Provider A, has a lower mean desired speed 

and a higher average sample rate. The second provider, Provider B, has a faster mean desired speed 

and a lower average sample rate. The overall vehicle population is strictly comprised of vehicles 

with the driving characteristics of these two subpopulations, but only a fraction of all vehicles are 

probes. In all validation scenarios, 1/7th of all vehicles have the desired speed distribution of 

provider A, and 6/7th of all vehicles follow the desired speed distribution of provider B. The within 

population penetration rates is the same for both subpopulations in all cases, though the overall 

penetration rate (as a fraction of the total vehicle volume) differs. It is clear that this will not be 

the case in general, and in fact a real world vehicle population may contain vehicle subpopulations 

with speed distributions that differ significantly from those represented in the probe vehicle 

population. Thus, the simulated scenario could be naively interpreted as a “best case scenario” in 

that the probe vehicle population is representative of the true traffic population with respect to 

desired speed distribution.  
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To explore the bias that can result when two providers have different speed distributions, 

synthetic desired speed distributions were devised for both providers. Entering traffic volume is 

set to 4500 𝑣𝑒ℎ/ℎ𝑜𝑢𝑟, which gives arriving volumes for Providers A and B of 𝜆𝐴 =

𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 × 1 7⁄ × 4500 𝑣𝑒ℎ/ℎ𝑜𝑢𝑟 and 𝜆𝐵 = 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 × 6 7⁄ × 4500 𝑣𝑒ℎ/

ℎ𝑜𝑢𝑟, respectively. The desired speed distributions for the two simulated data providers are shown 

in Figure 5-2.  

 

Figure 5-2: Desired speed distributions and sampling rate distributions for the two simulated 

data providers. 

5.2 Sample Size and Completeness 

Figure 5-3 shows the completeness rate (or, conversely, missing data rate) estimation 

results for an overall penetration rate of 0.02 (2%) and observation interval of 2 minutes. Note that 
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completeness is higher, all being equal, for longer road segments due to higher average travel time. 

Over 40% of the observation intervals were missing for the shortest segment and nearly 25% of 

all observation intervals were missing. As this figure shows, the analytical and Monte Carlo (MC) 

methods both provide very high accuracy.  

 

Figure 5-3: Completness Estimation Results for the Base Scenario 

Figure shows the estimated and observed completeness for one road segment over a range of 

penetration rates. Again it is clear that the analytical and Monte Carlo methods give nearly identical 

results, and both accurately reflect the observed completeness. Figure 5-5 shows the observed and 

estimated vehicle count (per observation interval) for road segment 3. Because traffic state is 

approximately identical for all penetration rates, the observed vehicle count is approximately a 

multiplicative fraction of the probe vehicle volume. Because of this, the relationship between 

penetration rate and vehicle count is expected to be linear. However, the completeness does not 
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increase linearly with penetration rate, because of the increasing likelihood of multiple vehicles 

being present and the number of vehicles present in a single observation interval also increases 

with penetration rate.  

 

Figure 5-4: Missing Data vs. Penetration Rate, Road Segment 3 
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Figure 5-5: Observed Vehicle Count vs. Penetration Rate, Road Segment 3 

Figure 5-6 shows the mean sample count (per observation interval) for road segment 3 over a range 

of penetration rates. Again, the relationship between sample count and probe vehicle population is 

expected to be linear, which is reflected in these results.  
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Figure 5-6: Mean Sample Count vs. Penetration Rate, Road Segment 3 

5.3 Measurement Bias and Variance 

Figure 5-7 shows the speed estimation results for all road sections for all road segments 

with an overall penetration rate of 0.02 and observation interval of 2 minutes. In this case, speed 

is first aggregated by vehicle and then by time period, and the estimated measured speed is 

calculated analytically and using the Monte Carlo (MC) method. The true speed considers all 

vehicles at all times, and as such represents the actual mean speed over all vehicles and time 

periods (including both probe and non-probe vehicles). This figure shows a mean bias of just over 

1 mph, though there is variation between different road segments. The lowest bias is observed on 

link 9, the longest link. This largely reflects the fact that link 9 has a mean travel time of nearly 
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one minute, there is very low occurrence of vehicles with long sampling intervals being missed 

completely.  

 

Figure 5-7: Speed Estimation Results for Penetration Rate of 0.02 

To explore the relationship between observation interval and sampling bias, a range of observation 

intervals is used. Consider that, with 1-minute observation intervals, there would not be a great 

deal of difference between aggregating by vehicle first or taking the overall mean of vehicle speed 

updates in each time interval for the penetration rates used here. This is because very few vehicles 

pass through each road segment in 1 minute, and so most observations are simply a single vehicle. 

By increasing the length of the observation interval, it allows more vehicles to be present in each 

time step, with the result that the number of samples obtained per vehicle has significantly more 

influence that for shorter observation intervals. In this section, aggregating first by vehicle and 

road link and then by time period will be referred to as method 1, and taking the simple mean of 

updates for each time period and road link will be referred to as method 2. For method 2, the Monte 

Carlo method is used. For method 1, the analytical approach is used. (both methods are described 

in detail in Section Chapter 4:). 
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Figure 5-8 shows that, for method 1, bias is most severe for shorter observation intervals 

and quickly reaches a relatively static level. On the other hand, the speed bias generally increases 

with the length of the observation interval for method 2 for observation intervals greater than 60 

seconds. As noted previously, using the simple mean of all vehicle updates in a time interval 

generally leads to more emphasis on slower moving vehicles and those with shorter sampling 

intervals. Comparing the two, it can be seen that bias decreases somewhat between the 30 second 

and 120 second observation intervals in both cases. Below 60 seconds, bias is primarily driven by 

the increased probability of observing slower moving or more frequently sampled vehicles rather 

than sample count, so it makes sense that this can be observed in both cases. It should be pointed 

out that the trends observed here are hardly general, and would be significantly different under 

different sampling and/or traffic conditions.  

 

Figure 5-8: Observed Speed vs. Observation Interval Length 

Referring to Figure 5-9 and Figure 5-10, it is clear that the difference between method 1 and 

method 2 is small for shorter observation intervals, and increases as the length of the observation 
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interval increases. At an observation interval of 30 seconds, there is very little difference at all 

between the two.  

 

Figure 5-9: Observed Speed for all Road Segments, Observation interval = 300 Seconds 

 

Figure 5-10: Observed Speed fo all Road Segments, Observation Interval = 30 Seconds 
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In this scenario the observation interval is held at 2 minutes and the penetration rate allowed to 

vary. As the penetration rate, or the length of the observation interval increases, the measured 

speed using method 2 gradually approaches the weighted mean, where the weighting parameter is 

the expected sample count. As this work shows, higher penetration rates do not necessarily lead to 

improved accuracy, and in some cases can actually exacerbate sampling bias. 

Figure 5-11 shows the true, observed, and estimated speeds, averaged over all road links, 

over a range of penetration rates. Note that, for method 2, the observed speed decreases with 

penetration rate. As previously mentioned, this is driven by the fact that, as the number of 

contributing vehicles increases, the number of samples produces by slower and more frequently 

sampled vehicles has a greater impact on the observed speed. For method 1, observed speed is 

essentially static, which reflects the increased probability of observing certain subpopulations and 

slower moving vehicles. Also, referring to Figure 5-12, it is clear that method 1 produces 

significantly lower bias overall for the test scenarios. Figure 5-4 shows the missing data rate (or 1 

– completeness) for all road segments over a range of penetration rates. The decreasing trend is 

expected, as higher penetration rates will in general produce few missing observations. However, 

it is worth noting that the bias will in some cases be worse under higher penetration rates, as shown 

in Figure 5-11.  
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Figure 5-11: Observed Speed vs. Overall Penetration Rates, Road Segment 4 

Figure 5-12 shows the observed and estimated speeds using both aggregation methods over all 

penetration rates and road links. It is clear from this illustration that the proposed methods 

accurately reflect the true sampling results, and the differences between different traffic and road 

characteristics. This figure also shows that the sample mean aggregation method is more sensitive 

to differences in driving and sampling conditions, and to a greater extent over-represents 

frequently sampled and slower moving vehicles.  
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Figure 5-12: Speed vs. Road Link, All Penetration Rates 

Figure 5-13 and Figure 5-14 show the observed variance in the mean observed speed across 

observation intervals over a range of penetration rates for road segment 9 (using aggregation 

methods 2 and 1, respectively). Because the traffic conditions are essentially the same for all 

penetration rates, the decreasing variance largely reflects the increasing sample size present in each 

observation interval. The variance is estimated using the Monte Carlo method. This figure 

illustrates the fact that, in addition to sample bias and completeness, the variance in the observed 

speed is key sampling-related factor influencing probe data quality. Likewise, the variance 

obtained using aggregation method 2 is significantly worse than that obtained using method 1. 

This can be explained in part by the fact that the presence of a slow moving and frequently sampled 

vehicle can significantly impact the mean observed speed during a single observation interval for 

the sample mean aggregation method. The vehicle mean first method would give such a vehicle 

much lower weight in the aggregation process, thereby reducing the variance. Of course these 
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results ignore non-sampling sources of error, including GPS noise. It is likely that, in many cases, 

increasing the sample size would help to further smooth out such sources of randomness.   

 

Figure 5-13: Variance in Observed Speed (Method 2) vs. Penetration Rate, Road Segment 9 

Figure 5-15 shows the mean variance computed using the analytical approach over all vehicle 

subpopulations for road segment 9. No method was discussed here for combining the variance 

obtained for each vehicle population into a single observed speed variance estimate, so this 

illustration is the simple mean across all subpopulations and sampling intervals. It does not 

constitute an estimate of the observed variance, but does show that the subpopulation-wise 

variance estimation method proposed here is representative of the expected observed speed 

variance for the respective subpopulations. Also note that the mean subpopulation variance is 

substantially higher than the mean observed variance shown in Figure 5-14. This is because the 

sample sizes for each subpopulation is much lower, than the overall sample size, resulting in higher 

mean observed variance.  
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Figure 5-14: Variance in Observed Speed (Method 1) vs. Penetration Rate, Road Segment 9 

 

Figure 5-15: Mean Observed Speed Variance Across All Vehicle Populations, Road Segment 9 
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5.4 Discussion 

From the results presented in this section it is clear that the estimation methods are consistently 

highly accurate for describing high level trends in data completeness, sample size, bias, and 

variance in the measured values. Nearly identical results were obtained from the Monte Carlo and 

analytical methods proposed, which supports the physical interpretation of the data collection 

process that underpins the proposed model. However, it should be stressed that these methods do 

not constitute a model of the stochastic, time varying dynamics of traffic conditions. For example, 

little consideration is given to temporal correlation between observations from a given vehicle and 

the events in consecutive observation intervals. Instead, the results obtained through these methods 

represent what would be obtained from random samples from a steady state system. The methods 

presented here are a suitable mathematical model through which to understand quality issues in 

probe vehicle data, and a suitable methodology for conducting higher-level analysis of existing 

and planned data collection processes.  

 The outcome of this validation work suggests that the proposed model would be useful not 

only in characterizing missing data rates and sample sizes, but also the bias and variance 

attributable to the sampling mechanism. Thus, there are a number of ways in which the model can 

be used in practice. First, it provides a mathematical basis for evaluating the data quality impacts 

of different combinations of probe vehicle source data. With some modifications, this framework 

can also be used to assess anomalies and quality issues in existing probe vehicle datasets. Further, 

research in a variety of fields has investigated joint modeling of outcomes and missingness in an 

informative missing data process. By describing the relationship between the quantity of interest 

(speed or travel time) and the probability of missingness, the formulation proposed here could 

provide a suitable foundation on which to develop predictive models that are robust to non-random 
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missing data patterns. Such models can be applied in data imputation as well as general predictive 

modeling tasks. More generally, the model described here can be considered a lens through which 

to view common quality issues in commercial probe vehicle datasets, for example, bias that varies 

by time and location, missing data prevalence and patterns, and excessive variance values that 

often occurs during low volume time periods. A more in-depth (though not comprehensive) 

discussion of potential applications is given in Section 6. 
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Chapter 6: Applications 

6.1 A Predictive Analysis of Probe Vehicle Data Completeness 

Without access to a large collection of raw GPS trace data and corresponding commercial link-

level traffic data, it is difficult to validate the proposed framework against real-world data. 

However, this section describes the development of a predictive model for probe vehicle data 

completeness that broadly supports the framework. In addition, this section shows how the bias 

and completeness issues outlined in this work can lead to a better understanding of probe vehicle 

data quality. As this work shows, even ignoring the within-observation bias, assuming the data 

that is present constitutes a representative sample from the true traffic speed distribution can lead 

to significant overrepresentation of slower moving time periods.  

6.1.1 Data Description 

The data used in this analysis is from the Federal Highway Administration (FHWA) National 

Performance Management Research Dataset (NPMRDS). This dataset has been acquired and made 

available by the FHWA under contract with HERE North America, a commercial data provider. It 

contains nation-wide link level travel time at five minute intervals, along with road segment 

(referred by unique Traffic Message Channel or TMC codes) GIS shape files. Unlike some other 

common probe vehicle datasets, the NPMRDS dataset is raw and unprocessed, and has some 

obvious quality and consistency issues. In addition, quite a large number of records are missing 

entirely. In the procurement documents, the FHWA explicitly stipulates that the data should 

represent only measured travel times rather than some combination of measured and imputed 

values (Crowder 2012). While the unprocessed and incomplete form of the data may seem 
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undesirable at first glance, it allows the user to retain full control of quality control, imputation, 

and uncertainty estimation which should result in more informed analysis and decision making. It 

should be noted that the data used in this study is from the first version of the NPMRDS, the 

contract for which ended in 2017.  

The data used in this study is from Interstate 5 in western Washington State between 

Tacoma and the Canadian border. A total of 65 road segments or TMCs, all in the northbound 

travel direction, are included on this corridor, ranging in length from 0.25-4.6 miles. Data from the 

month of June, 2015 was used and, with five-minute observation intervals, this constitutes 8640 

observations for each road segment. Not all road segments on this corridor were used, as segments 

had to be selected such that reliable loop detector data was available for all lanes on each segment. 

A significant number of time intervals are missing in all cases as noted previously. In addition to 

the NPMRDS travel time data, traffic volumes and travel speeds were obtained for the analysis 

sections from loop detectors owned by Washington State Department of Transportation. Speed 

and volume data from loop detectors were aggregated over all sensors present on each TMC 

segment. A description of the road segments used in this work, including segment length and rate 

of missingness, is provided in Table 6-1. 

Table 6-1: Description of Road Segments 

 Missing Rate Length (miles) 

Mean 16.5% 1.56 

Std. dev. 10.3% 1.00 

Min 2.9% 0.25 

Max 61.7% 4.65 

25th Percentile 9.7% 0.84 

50th Percentile 13.4% 1.31 

75th Percentile 22.0% 1.87 
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6.1.2 A Brief Discussion of NPMRDS Data Completeness 

A few things should be clarified before introducing the modeling methodology. As discussed 

previously, assuming a constant penetration rate for contributing devices, the completeness of 

available probe vehicle data for a given segment or TMC is a function of total vehicle time, which 

is itself a function three interrelated factors: a) the length of the road section or TMC, b) the volume 

of vehicles on the roadway, and c) the travel speed on the segment. Though sample frequency is 

also an important factor, at a fixed sampling frequency completeness will still be a function of total 

vehicle time. As is typically the case for probe vehicle data, the NPMRDS only provides length 

and segment-wise speed or travel time information. Providing data in this aggregate form, rather 

than raw vehicle GPS traces, simplifies the task of applying such data in transport analysis, and 

provides a layer of privacy protection for individual travelers represented in the data. For this 

reason, we expect that such pre-aggregated data will continue to represent the majority of probe 

vehicle data used by transport agencies well into the future.  

To illustrate these basic characteristics of missingness and related causal factors in probe 

vehicle data discussed in this work, a series of plots were developed for a section of I-5 in 

Washington State using only the described NPMRDS dataset. Figure 6-1 shows the relationship 

between completeness, represented as the percent of 5-minute intervals for which data are 

available, and road segment length. As expected, Figure 6-1 shows that data completeness is 

dependent to a large extent on the length of the segment.  
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Figure 6-1: Plot of Data Complenteness vs. Segment Length for I-5 Corridor in Western 

Wasington 

Figure 6-2 shows the data completeness versus hourly average speed. In this case, loop detector 

speeds were aggregated into hourly averages, and plotted against the probe vehicle data missing 

rate for the corresponding time period and segment. Speeds from loop detectors were used to insure 

that all time periods and locations were included, as many hour-long time periods are missing 

entirely from the probe vehicle dataset. It is clear from  Figure 6-2 that there is an overarching 

inverse relationship between speed and completeness, which again is as expected. In comparing 

Figure 6-1 and Figure 6-2, it should be clear that the there is significant variation between the 

missing rates of different TMCs, even at a given travel speed, which is not apparent from the 

aggregate view presented in Figure 6-2 alone. In viewing these plots, it is important to note that 

there is significant heterogeneity in terms of the relationship between traffic state (i.e. level of 

congestion) and missingness along the study corridor due to differences in the number of lanes, 

segment length, and daily traffic characteristics 
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Figure 6-2: Plot of Data Completeness vs. Travel Speed for I-5 Corridor in Western 

Washington 

6.1.3 Model Development 

This section develops a censored count regression model, starting with the Poisson PMF 

expression for the number of vehicles appearing on a road segment during an observation interval. 

Developing a regression model describing the data observation process and missing patterns in 

real-world probe vehicle data is somewhat problematic because the number of contributing 

vehicles is not known. Instead, the true number of vehicles is known only when the count is zero, 

otherwise it can only be said with certainty that 1 or more vehicles were present. To address this, 

we develop a censored Poisson regression model where the count is censored at 1. In this way, we 

can estimate the true number of reporting vehicles, as well as the probability of data being observed 

for various combinations of travel time and traffic volume. Some will recognize this methodology 

as analogous to censored survival analysis, similar at least in concept to (J. Kim, Mahmassani, and 
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Dong 2010). However, here we consider the Poisson approach produces good results and is more 

interpretable given that the data is both left and right censored from a survival analysis perspective. 

Here a brief summary of the censored Poisson model is given; for a more in-depth 

discussion please refer to (Cameron and Trivedi 2012). First, given some threshold c for which the 

observed count yi* = c if the true count yi ≥ c, an indicator variable is defined as shown in Equation 

6.1 

𝑑𝑖 = {
1,  𝑦𝑖 ≥ 𝑐
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      6.1 

To write the log likelihood expression, first observe that Pr(yi  ≥ c) can be computed as 1 - Pr(yi  

< c) which can be described as shown in 6.2 as a Poisson process: 

Pr( 𝑦𝑖 ≥ 𝑐) = ∑ 𝜌𝑗 (𝑗!)exp (−𝜌)⁄ =∞
𝑗=𝑐 1 − ∑ 𝜌𝑗 (𝑗!)exp (−𝜌)⁄𝑐−1

𝑗=0     6.2 

This gives the expression shown in Equation  6.3 for the Poisson regression log likelihood, where 

1 - Pr(yi  < c) is defined as in Equation  6.2 and ρi = exp(β'xi ) arises from the Poisson log link 

function with predictor set X, response variable Y, and model coefficient vector β (Famoye and 

Wang 2004; W. H. Greene 2005). The result is that the conventional log likelihood expression is 

nonzero when the count is observed (the first term in Equation 6.3), and the 1 - Pr(yi  < c) 

expression is nonzero when the count is equal to or larger than the threshold (second term in 

Equation 6.3). 

𝐿𝑜𝑔𝐿(𝛽|𝑋, 𝑌) = ∑ {(1 − 𝑑𝑖)[𝑦𝑖𝛽𝑥′𝑖 − exp (𝛽𝑥
′
𝑖)] + 𝑑𝑖𝐿𝑜𝑔(Pr( 𝑦𝑖 ≥ 𝑐))}𝑛

𝑖=1   6.3 

The model parameters can then be estimated using one of several methods, in this work we rely 

on the VGAM package in R (Thomas W. Yee 2015; T. W. Yee and Wild 1996), which applies the 

Newton-Raphson algorithm.  
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With a relatively homogeneous set of locations and time periods, the only predictor 

variable in the case should be the product of the incoming vehicle volume and the expected travel 

time across the segment. This has intuitive interpretation on the basis of a Poisson arrival process 

(see section 4.2.1), and removes the need to explicitly consider the difference in length and speed 

profiles across the various road segments. Under the assumption that the product of expected travel 

time and arriving contributing vehicle count is linearly related to the product of expected travel 

time and overall vehicle volume, we take the log of this term as the predictor. We may expect that 

the overall percentage of contributing vehicles on the roadway traffic characteristics and time 

period, and to account for this we include both a) dummy variables representing am/pm and 

weekday/weekend time periods, and b) interaction between the time period dummy variables and 

the log of the product of arriving volume and expected travel time.  

It bears noting that an assumption inherent to this model formulation is that, if a 

contributing vehicle is present at any point in a time period, it will be observed. In reality, probe 

vehicles report their location or speed at discrete time intervals rather than continuously. Thus, a 

vehicle that is reports its state information less frequently is less likely to be observed, all else 

being equal. However, the true sampling frequencies are not known and, for this reason, we follow 

the above described formulation expecting that the rate parameter lambda will indicate the 

expected sample count, rather than the vehicle count. Note that the total number of samples over 

a time interval represents superposition of multiple independent point processes (that is, one or 

more vehicles producing updates at different time intervals), which makes intuitive sense as a 

Poisson process (M. Ferman, Blumenfeld, and Dai 2005). In any case, the sampling rate implied 

by this model formulation can be meaningfully interpreted as an effective sampling rate, and the 

estimated observation probability should be unbiased.  
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6.1.4 Modeling Results 

The regression model estimated as described in the previous section is summarized in Table 6-2. 

All terms are significant at the 0.01 level, and coefficient estimates generally make intuitive sense. 

For example, we can interpret these coefficients as indicating the probability of observing a 

contributing vehicle increases with 𝜌, on weekdays, and in the evening.  

Table 6-2: Regression Model Summary 

Term Coef. Estimate Std. Error z value Pr(>|z|) 

Intercept -1.7381 0.0304 -57.10 <2E-16 

log(𝜌) 0.5464 0.0074 73.52 <2E-16 

weekday 0.1418 0.0275 5.15 2.65E-07 

hour -0.1596 0.0223 -7.15 8.84E-13 

log(𝜌) x weekday 0.0204 0.0070 2.94 0.00329 

log(𝜌) x hour 0.0686 0.0056 12.25 <2E-16 

 

An important step in this work is to find a way to validate the proposed methodology in a way that 

is instructive to the problem at hand, namely to answer the question of whether this method can 

accurately quantify the relationship between volume, travel time, and data completeness. Though 

there are a range of statistical test that have been applied to such models, prediction accuracy 

cannot be assessed because the true counts are not observed. Here we have approached this 

problem by generating empirical cumulative distribution (CDF) curves (Pr(vehicle count ≥ 1) ) 

from the observed data missing rates, and plotting these against the predicted CDF from the 

Poisson regression. This is done for each possible combinations of weekday/weekend and 

AM/PM, a subset of which is shown in Fig. 3. The regression model is trained using 50% of the 

available data, and the CDF plots generated from the remaining 50%. The empirical CDF is 

calculated as the average completeness (as a fraction) for each 𝜌 range, with bin sizes of 20 (in 

terms of 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 × 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑚𝑖𝑛𝑢𝑡𝑒s). 
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Figure 6-3: Predicted and Emperical CDF for Data Complenteness During Weekday AM 

Time Period, With 𝜌 Histogram 

 

Figure 6-4: Predicted and Emperical CDF for Data Completness During Weekend AM Time 

Period, With 𝜌 Histogram 
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Figure 6-5: Predicted and Emperical CDF for Data Completness During Weekend PM Time 

Period, With 𝜌 Histogram 

These plots show a good fit with the empirical data, and demonstrate that the CDF curve is well-

described by the Poisson distribution. The least convincing fit is the weekend PM time period, 

which may be the result of behavioral and temporal heterogeneity of weekend evening travelers. 

The 𝜌 histograms indicate that, to varying degrees, the majority of observations fall in regions that 

will be expected to be missing a significant number of observations.   

To present the probability of observing data as a function of both volume and travel speed, 

contour probability plots are used as shown in Figure 6-6 and Figure 6-7. To understand these 

results, consider a segment 1 mile in length with 2 travel lanes, an average speed of 60 mph, and 

entering volume of 1000 veh/hr/ln. Observations for this scenario would be under 77% complete 

for a 2 lane road, and over 84% for a 3 lane road. Were the speed reduced to 48 mph, the 

completeness would increase to 81% for a 2 lane road and 87% for a 3 lane road. Thus, especially 
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in lower volume time periods when travel time measurements are made based on a small number 

of vehicles, it is easy to see how the data can be biased toward slower moving vehicles.  

 

Figure 6-6: contour Plot of Data Completeness as a Function of per-lane Traffic Volume and 

Speed for 1 mile, 2 lane Road Segment 
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Figure 6-7: Contour Plot of Data Completeness as a Function of Per-lane Traffic Volume and 

Speed for 1 mile, 3 lane Road Segment 

Another result that is likely to bias travel time reliability and other engineering analysis occurs 

during moderate to high volume periods. That is, as the demand volume approaches the capacity 

of a facility (say, 2000 veh/hr/ln on a freeway), the probability of breakdown (traffic entering a 

congested state) increases dramatically (Brilon, Geistefeldt, and Regler 2005). If, for example, half 

of all peak period travel (> 1700 veh/hr/ln) results in significant slowdowns and a resulting 

decrease in travel speed from 75 to less than 15 mph, the congested data will be nearly 100% 

complete whereas the non-congested data will be less than 91% complete. This may seem 

counterintuitive, as we might expect the total number of vehicles passing through a segment to be 

higher when traffic is not congested and, if a certain fraction of all vehicles are reporting data, the 

likelihood that a contributing vehicle pass through the segment should increase. However, the 

maximum headway between contributing vehicles for the data to be complete in most cases is just 



www.manaraa.com

 

 

92 

below the time interval length plus the travel time. Thus, up to the point of traffic breakdown, an 

increase in volume will result in a decrease in the measured headway-as well as an increase in the 

maximum headway allowable for data completeness if the travel time increases correspondingly. 

As traffic enters a congested state, if the classical quadratic form of the volume-speed relationship 

can be assumed, the increase in travel time will be fractionally less than the drop in time headway. 

Thus, we may expect the rate of data missingness to increase somewhat, especially for short 

segments. That said, it cannot be assumed that the fraction of vehicles on the road contributing to 

the location services is static. While this phenomenon was not studied in this work, it might be 

assumed that drivers stuck in traffic will look to mobile location services to find a better route, or 

simply to check the severity and extent of the congestion. This distinction in missingness 

mechanisms is important, because the observations on the high end of 𝜌 could represent either 

relatively stable traffic conditions on a long road segment, or near breakdown conditions for a road 

segment that is shorter or with fewer lanes. Resolving this heterogeneity may help to explain the 

variability in the empirical data in more congested traffic. 

6.1.5 Discussion 

This section presented a modeling methodology which describes the probability of observing 

data using the Poisson distribution. The justification for the choice of models is based in part on 

an intuitive understanding of vehicle arrivals as a Poisson process, and supported mathematically 

by established queuing theory. The results of this analysis suggest that, as expected, the missing 

patterns are very closely related to both travel time and vehicle volume, which could have 

significant impacts on any statistical analysis based on this dataset. This also adds a layer of 

complexity to imputation efforts, as the factors describing the missing patterns may not always be 

available. For example, in most cases, volume measurements are only available for roadways with 
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fixed mechanical sensors. 

In our analysis, it is clear that there is some temporal heterogeneity that is not sufficiently 

accounted for in the model. Additionally, a number of anomalies were identified in the dataset 

which could add additional complexity to any analysis based on this data. Understanding this, and 

investigating the missing rates under moderate to high traffic conditions (which are of the greatest 

interest in many cases), is a subject for future work. The work described in this section provides a 

justification for the mathematical formulation presented in Chapter Chapter 4:, and offers a more 

complete understanding of the problem at hand and the potential impacts, and constitutes a starting 

point for more informed transportation analysis using mobile location data. This type of data 

overcomes many of the shortcomings of fixed mechanical sensing but, like fixed sensors, it comes 

with a unique set of considerations for data quality and uncertainty that must be addressed.  

6.2 Planning for Completeness and Sample Size 

This case study illustrates how the data completeness for a set of real-world road links can be 

assessed for a range of sampling scenarios. This example is intended to show how the proposed 

methodology can be used to design future experiments involving probe vehicles for generating 

real-time traffic information. A number of previous publications have attempted to describe the 

minimum penetration rate of probe vehicles needed to achieve some fixed level of completeness 

(S.M. Turner and Holdener 1995; Boyce, Hicks, and Sen 1991). However, such work is generally 

empirical in nature, relying on real-world vehicle probe data or simulation. One notable exception 

can be found in (M. A. Ferman, Blumenfeld, and Dai 2003), but the model provided in this paper 

was quite simple and ignored several key factors, including the influence of sampling rate and road 

segment length. In this work, the data completeness for any number of hypothetical scenarios can 

be estimated without the need for extensive preliminary data collection or simulation.  
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6.2.1 Data Description 

The data used in this study is the same as used in Section 6.1, collected on Interstate 5 near Seattle, 

WA during the month of June, 2015. Here, only the weekday evening hours from 4:00PM to 

8:00PM are considered. The loop data is used to obtain traffic volumes and speeds as inputs to the 

proposed methodology. For each road segment defined by the NPMRDS TMC standard, the data 

is divided into 10 𝜌 (traffic volume * travel time) quantiles and the average volume, speed, and 

completeness are computed for each quantile. These quantile bins are intended to represent a 

reasonable demarcation of expected traffic states over the study period and, though there is 

obviously some variation in volume and speed within each bin, should be adequate for planning 

level analysis. In addition, using the same TMC road segment definitions, a range of hypothetical 

scenarios are investigated.  

6.2.2 Experimental Set Up 

In this study it is assumed that multiple vehicle subpopulations will be present, each with a fixed 

sampling frequency and penetration rate, as well as potentially a unique desired speed distribution. 

The objective is to investigate a range of sampling scenarios, such that it will be possible to show 

the minimum requirements to achieve a given level of completeness or average number of samples 

for each traffic state bin (as defined by the 𝜌 quantiles discussed previously). To do this, the 

methodology described in Section Chapter 4: is applied to a grid of penetration rates, observation 

interval, and sampling frequency distributions. The inputs to this methodology includes the 

sampling rate distribution, the overall penetration rate, and the observation interval as well as, for 

each subpopulation, the mean and variance of the speed distribution. Thus, it is trivial to estimate 
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completeness and sample counts for a range of scenarios as well as to estimate sensitivity to 

different inputs.  

 All of the scenarios investigated are based on the probe vehicle population shown in Table 

6-3. Note that each subpopulation is defined by a distinct combination of sampling rate and speed 

distribution, so each subpopulation could be a combination of multiple providers. Likewise, two 

subpopulations need only differ in terms of speed distribution, sampling frequency, or both to be 

considered distinct. Thus, the penetration rate and population fraction may in fact be the weighted 

mean and sum, respectively, over multiple smaller, non-overlapping subpopulations. The scenario 

is arbitrary, but is intended to show how a mixed vehicle population can be considered in the 

methodology. Note that the population fractions and speed adjustments are designed such that the 

true mean speed over all subpopulations is simply the overall observed mean speed. This is done 

to insure that the scenario represents a reasonable approximation of reality. This table shows six 

distinct vehicle subpopulations, each of which is associated with the following characteristics: 

o Vehicle Class: Vehicle type; passenger car (PC), Commercial Vehicle (CV), or Transit 

Vehicle (TV) 

o Sampling Interval: Number of seconds between samples 

o Subpopulation Fraction (all): the fraction of the entire vehicle population made up of 

vehicles from this subpopulation 

o Population fraction (probes): The fraction of vehicles in the probe vehicle population that 

is made up of vehicles from this subpopulation 

o Effective Penetration Rate: The fraction of the overall vehicle volume made up of probe 

vehicles from this subpopulation 
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o Speed adjustment: The average deviation of the subpopulation mean speed from the 

population mean speed. That is, if the population mean speed is 62 mph, a subpopulation 

speed adjustment of -2 will result in a subpopulation mean speed of 60 mph.  

o Speed standard deviation: The standard deviation of the mean vehicle speed for each 

subpopulation (assumed to be fixed) 

Because the penetration rate varies between the different subpopulations, the probe vehicle 

population is not strictly representative of the overall vehicle population in this scenario. This is 

scenario is based on the assumption that commercial and transit vehicles are more likely to be 

equipped with mobile GPS and contribute to the dataset. Thus, though they constitute a smaller 

fraction of the overall vehicle population, these vehicles represent a comparatively large fraction 

of the probe vehicle population.  

 It is highly likely that the vehicle type, sampling frequency, and desired speed distributions 

will shift significantly depending on the time of day and/or day of the week, as well as gradually 

over longer time horizons. Because of this, only the evening hours between 4:00PM and 8:00PM 

are considered here, though in practical application it would be advisable to consider all potential 

scenarios.  

Table 6-3: Base Scenario 

Parameter 
Vehicle Subpopulation 

1 2 3 4 5 6 

Vehicle Class CV TV PC CV PC PC 

Sampling Interval (sec/sample) 30 60 5 10 30 60 

Subpopulation Fraction (all) 0.05 0.02 0.15 0.20 0.30 0.28 

Subpopulation Fraction (probes) 0.457 0.365 0.034 0.027 0.062 0.054 

Effective Penetration Rate 0.0228 0.0073 0.0051 0.0054 0.0186 0.0151 

Speed Adjustment (mph) -2 -2.5 0 -1.81 0.51 1.28 

Speed Standard  3 3.5 4 3.6 3 4.2 
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For each 5 minute epoch in the measured data, the mean speed of each subpopulation described in 

Table 6-3 is computing by adding the speed adjustment to the population mean speed. The 

scenarios to be considered are as follows. 

Selecting an Optimal Observation Interval: In this scenario, the base case is considered 

(Table 6-3), and a range of observation interval values are explored. The objective in this case is 

to select an observation interval to insure a minimum number of samples and completeness is 

achieved.  

Selecting Data Providers: In this scenario, an additional data provider is considered in 

addition to the base case providers. The objective is to determine the value of the additional 

provider, decide whether it is necessary to purchase the additional data.  

For the purpose of determining completeness and sample size, only vehicles that produce 

at minimum a single state update on a road segment during a time period are observed. That is, 

vehicles that pass through a segment without being observed because of the scheduling of state 

updates are not considered to be observed in sample size or completeness calculations. It is entirely 

possible that the speed of a vehicle can be computed between subsequent updates and the results 

interpolated between segments. However, this analysis assumes that vehicles must be observed on 

a segment in order for the state information to be relevant to that segment. This is one possible 

scenario; it would of course be trivial to include all vehicles passing through a segment during an 

observation interval.  

6.2.3 Results: Scenario 1 

For the base scenario, the first step is to define a set of criteria for selecting the most appropriate 

observation interval. These could be based on the analytical requirements of the project, cost, and 
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any number of other considerations that will vary from project to project. For this work, the criteria 

are (rather arbitrarily) selected as follows:  

 The minimum (over all road sections) average vehicle count should be above 3 for the 

top 50% of 𝜌 bins 

 The minimum (over all road sections) average sample count should be above 5 for the top 

50% of 𝜌 bins 

 No more than 5% of all observation intervals should be missing due to lack of data 

 The minimum (over all road sections) average completeness should be above 85% for 

every 𝜌 quantile bin 

Figure 6-8 shows the minimum average completeness for every combination of observation 

interval and 𝜌 quantile. It is clear from this plot that an observation interval 0f 180 seconds is the 

minimum length that satisfies the minimum completeness requirements (above 85% for all 𝜌 

quantile bins). Similarly, Figure 6-9 shows the minimum average vehicle and sample count for the 

top 50% of 𝜌 bins for each observation interval, and it is clear that 180 seconds is the minimum 

length that satisfies the sample size requirements.  
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Figure 6-8: Minimum Average Completeness vs. Observation Interval and 𝜌 

 

Figure 6-9 Minimum Average Sample Size and Vehicle Count vs. Observatio Interval (Top 

50% of 𝜌 Bins) 
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6.2.4 Results: Scenario 2 

Having selected a minimum observation interval according to the chosen set of criteria, the next 

objective is to determine whether there is any substantive benefit to acquiring an additional probe 

vehicle data set. The additional data provider considered here represents vehicles with identical 

behavior and sampling interval to one of the existing data providers. As a result, the fourth vehicle 

category from the base scenario is now split into two different vehicles. Thus, the vehicle 

population represented by the fourth vehicle category now represents only 10% of all vehicles, but 

the within-subpopulation penetration rate is doubled to 0.054. The remaining vehicles from that 

subpopulation are now represented as an additional vehicle category representing 10% of all 

vehicles and with a penetration rate of 0.10. The revised probe vehicle population is described as 

shown below in Table 6-4. Note that adding this new provider has the result of increasing the 

overall penetration rate of all probe vehicles from approximately 0.0744 to approximately 0.0844, 

a significant increase that will increase the sample size by more than 13%.  

Table 6-4: Expanded Dataset Scenario 

Parameter 
Vehicle Subpopulation 

1 2 3 4 5 6 7 

Vehicle Class CV TV PC CV PC PC CV 

Sampling Interval (sec/sample) 30 60 5 10 30 60 10 

Subpopulation Fraction (all) 0.05 0.02 0.15 0.10 0.30 0.28 0.10 

Subpopulation Fraction (probes) 0.457 0.365 0.034 0.054 0.062 0.054 0.10 

Effective Penetration Rate 0.0228 0.0073 0.0051 0.0054 0.0186 0.0151 0.01 

Speed Adjustment (mph) -2 -2.5 0 -1.81 0.51 1.28 -1.81 

Speed Standard  3 3.5 4 3.6 3 4.2 3.6 

 

Figure 6-10 shows the minimum average completeness for the base and expanded scenarios, using 

the observation interval selected in the previous subsection. Figure 6-11 compares the 
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completeness for the top 50% of 𝜌 quantiles, and Figure 6-12 shows the comparison of vehicle 

counts.  

 

Figure 6-10: Minimum Average Completeness for the Base and Expanded Scenarios 

 

Figure 6-11: Minimum Average Completeness for the Top 50% of 𝜌 Bins 

Having determined (not unexpectedly) that both scenarios will satisfy the established criteria, an 

interesting question would be whether or not the expended dataset will allow us to reduce the 

observation interval from 180 to 60 seconds. Figure 6-12, Figure 6-13 show comparisons of the 

minimum average vehicle count and completeness, respectively, for the top 7 𝜌 bins. It is clear 

from this comparison that, while the expanded dataset does increase the vehicle count and 
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completeness significantly, the minimum criteria cannot be satisfied at an observation interval of 

60 seconds. The minimum average vehicle count only reaches 3 at the top 𝜌 bin, and the minimum 

average completeness falls below 85% on the 7th 𝜌 bin.  

 

Figure 6-12: Minimum Average Vehicle Count for the Top 50% of 𝜌 Bins (60-Second 

Observation Interval) 

 

Figure 6-13: Minimum Completeness for Top 70% of 𝜌 Bins  

(60-Second Observation Interval) 
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As a further investigation of the potential benefit of the expanded dataset, here the standard 

deviation of the observed speed is considered. Though the estimation procedure presented in this 

work ignores the impacts of GPS noise and other sources of error beyond the sampling approach 

and parameters, it should give a reasonable estimate of the relative contribution of the sampling 

parameters to speed estimation error. Referring to Figure 6-14, it is clear that the expanded dataset 

reduces the observed speed standard deviation only slightly. Though the scenario is hypothetical, 

this illustrates the fact that increasing the sample size will decrease the observed variance, 

especially when significant heterogeneity in vehicle speeds is present. Consider that, in this 

hypothetical scenario, the true speed variance is assumed to be constant in the estimation of 

observed speed variance for all traffic conditions. Because of this, the reduction in the observed 

standard deviation (associated with both the increasing 𝜌 and higher penetration rate) is strictly 

attributable to the increases sample size.  

 

Figure 6-14: Mean Observed Speed Standard Deviation vs. 𝜌 

𝜌 Quantile Bins 
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6.2.5 Discussion 

Generally speaking, probe vehicle data that has been used in practice comes from commercial 

sources, and so the decisions represented in this section are not typically made by the consumers 

of this data. In that sense, the method described here may seem to be of little use in practice. 

However, decisions regarding the aggregation method and parameters, the economics of data 

acquisition, and other factors which have a significant impact on the quality of the resulting data 

must be made by someone. If this topic is ignored, and these important decisions continue to be 

made internally by data resellers, then data will generally be consumed as is with little information 

on which to assess shifts in data quality and coverage, statistical anomalies, and unexpected 

analytical results. Thus, the methodology described in this section will become more useful as 

consumers become more involved in the decision making process. Many of the practical details of 

data collection such as GPS error, communications malfunction and failure, and other issues are 

ignored here. For this reason, the method is intended as an approximation which requires very little 

information about the traffic and sampling mechanism. If more precise results are required for a 

particular area, and more supporting information regarding traffic and sampling conditions is 

available, microscopic simulation may be more appropriate.   

6.3 Bias Correction 

Without knowing the true distribution of vehicle types and driving profiles on the roadway, 

addressing bias in probe vehicle data is a challenging issue. In the previous sections, we have 

focused on the case where the true conditions can be known (or estimated), and estimated the bias 

that can be expected in the observation process. However, as noted previously, the bias that will 

be represented in the final aggregated speed measures is largely determined by the method used to 

estimate aggregate speed from individual vehicle updates. In general, there is a higher likelihood 
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that no probe vehicles will traverse a segment during an observation interval during lower volume 

time periods. The method(s) used to compute aggregate speed measures will have little impact on 

this source of bias. However, these methods will have a significant impact on the bias that arises 

within the observed data due to the sampling mechanism. 

Here the issue is approached by assuming that only some basic information about the relative 

fraction of vehicle subpopulations is known, and develop a set of methods to correct the sampling 

bias. The practicality of this method is largely driven by its computational complexity and the 

necessity of scaling to many thousands of roadway links.  Because of this, this work focuses on 

methods that can be applied with minimal computational work, such as would be required to train 

and apply complex statistical models. Such an approach would be especially important if the 

methods are to be applied in near real-time.  

6.3.1 Methodology 

If it can be assumed that all vehicle subpopulations (with respect to the mean speed distribution) 

are represented to some extent on a road segment during a given time interval, it should be possible 

to estimate the unobserved true traffic and sampling parameters from the observed data using some 

form of weighting scheme. Developing this weighting scheme is first step in this section. If this 

cannot be assumed, then other methods will be required to insure that the observed data is 

representative of the true traffic state. For this purpose, subpopulation imputation or hole-filling 

scheme is developed. Finally, an alternative approach to speed estimation is proposed which 

reduces the need for statistical weighting and imputation, and generally provides more accurate 

results than the point speed estimation methods described previously.  
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6.3.1.1 Inverse Probability Weighting 

Restricting attention to a single mean vehicle speed distribution, the set of vehicles that 

appears on a road segment during an observation interval will correspond to a random sample from 

this speed distribution. Assuming that this collection of vehicles is a reasonably representative 

sample of the probe vehicle population consisting of n probe vehicles, the result will be a vector 

𝑉 = {𝑣1, 𝑣2, … 𝑣𝑛} of vehicle speeds. Each of these vehicles and corresponding speeds has some 

probability of appearing on a road segment, as well as some probability of being observed given 

it appears on the road segment, which is a function of the speed itself (or travel time) and the 

sampling frequency of the associated probe vehicle. Thus, though the vehicles appearing on the 

segment may be a representative sample of the probe vehicle population, the observed sample may 

disproportionately favor shorter sampling intervals and slower vehicles relative to the true 

distribution of these parameters. A straight-forward correction can be made to the samples to 

reduce the sampling bias. The approach is adapted from survey and missing data literature, in 

which survey responses are weighted according to the inverse probability of response (Gary 2007) 

to improve estimation of population parameters. In the case of survey data, the probability of 

response or “response propensity” is often estimated using a regression model, trained on both 

responding and non-responding individuals with sociodemographic or other variables as 

predictors.  

In the case of probe vehicle data, the probability of response can be estimated using 

Equation 4.27, and the samples can be weighted by the inverse of 𝑃(𝑛𝑠𝑝𝑣 > 0|𝑇𝑇, 𝑠𝑟). This 

approach can be understood intuitively, knowing that the probability of a given realization of a 

random variable (e.g. observed mean speed or sampling interval) is defined by the product of a) 

the value occurring and b) the probability of the value being observed, given it has occurred. For 

example, there is some probability of a probe vehicle having a sampling interval of 30 seconds 
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appearing on a road segment during an observation interval. The probability of that vehicle being 

observed is a function of travel time and the sampling interval itself. By weighting the observed 

samples by the inverse probability of being observed, the estimated weighted mean will be a better 

approximation of the true expected value. The weighted speed calculation is completed as shown 

below in Equation 6.1, where 𝜇 is the estimated mean speed for a single observation interval.  

𝜇 = (∑ 𝑃(𝑛𝑠𝑝𝑣𝑗 > 0|𝑇𝑇(𝑣𝑗), 𝑠𝑟𝑗)𝑗 )∑
𝑣𝑖

𝑃(𝑛𝑠𝑝𝑣𝑖 > 0|𝑇𝑇(𝑣𝑖), 𝑠𝑟𝑖)
𝑖    ( 6.1 ) 

6.3.1.2 Population Weighting 

If the probe vehicle population can be considered a representative sample of the overall 

vehicle population, then this weighting step will give reasonably good results if the penetration 

rate is sufficiently high. In the case of multiple subpopulations, each with different penetration 

rates, then the probe vehicle population does not constitute a representative sample of the overall 

vehicle population. In this case, some information about the true overall vehicle population can be 

used to further adjust the subpopulation speeds. This is analogous to population weighting in 

survey literature. To do this, it is necessary to define vehicle classes such that a) the class of a 

vehicle can be identified through the GPS updates they provide and b) the driving behavior in 

terms of average speed relative to prevailing traffic speed within a subpopulation is expected to be 

relatively homogeneous. That is, the average speed on a link is a single distribution for each 

subpopulation and time period. For example, if the available probe vehicle data comes from a 

combination of taxis and on-board navigation from a certain brand of vehicles, each of the two 

providers would constitute a separate subpopulation. 

However, it may be the case that a vehicle population is present which, through some 

combination of low penetration rate and/or infrequent sampling, is often missing completely 

during an observation interval. Furthermore, there are likely to be observation intervals during 
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which no vehicles are observed, and these are statistically more likely to be faster moving, less 

congested time periods compared to those for which data is available. To address these challenges, 

some form of imputation scheme is needed to insure that all subpopulations can be represented in 

the final observed speed. Here, initial estimates are made using linear interpolation, and a Gaussian 

smoothing kernel is applied to the interpolated values. A state space time series model would seem 

to be more appropriate, and in many real-world cases (for example, a real-time application 

requiring both imputation and prediction) such a model would be preferable. However, at low 

penetration rates the underlying data is sparse enough to make training such a model problematic. 

An example of the proposed imputation scheme is shown in Figure 6-15, where the variance of 

the Gaussian smoothing kernel is set to 16. The final approach to bias correction in mixed probe 

vehicle penetration rates can be described as follows: 

1. For each observation interval, compute speed for each subpopulation (possibly 

using the inverse probability weighting method described above or the distance 

weighted pairwise vehicle speed as described in Section 6.3.1.3. 

2. Impute missing observation intervals for each subpopulation using some method, 

in this case linear interpolation with Gaussian smoothing described above. 

3. Compute the mean speed for each observation interval, weighting each 

subpopulation according to the known or estimated population fraction represented 

by that subpopulation. 
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Figure 6-15: Illustration of the Interpolation + Gaussian Smoothing Imputation Scheme 

6.3.1.3 Distance Weighted Harmonic Mean Speed 

The final methodological element to be discussed here is the method used to combine vehicle state 

updates into a mean speed measurement for each observation interval and location of interest. Until 

now, the drawbacks of different methods of aggregating pointwise vehicle speeds in various ways 

have been discussed at length. Now, a discussion of distance-weighted pairwise speed is offered 

as a generally more favorable alternative. This is not a new concept, in fact the introductory 

sections of this document discussed a variety of methods that have been used in the past to estimate 

link-level speeds from vehicle GPS measurements. However, this method is introduced here to 

compare it with the pointwise methods and point out the strengths and weaknesses of both 

approaches. It is likely that some probabilistic model for speed estimation could be identified that 

provides similar or superior results. However, it must be assumed that a suitable method must be 

as accurate as possible while remaining massively scalable. The distance-weighted mean speed 

estimation approach prosed here fits both of these requirements and as will be shown, performs 

better in most cases that the pointwise methods described and simulation.  
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 (Edie 1965) provides an accurate and interpretable definition of the mean speed on a road 

segment as the aggregate travel distance divided by the aggregate time spent on the segment by all 

vehicles during an observation period. This definition is the basis for the distance weighted 

harmonic mean speed calculated here, except of course that only probe vehicles are considered in 

the calculation. The equivalence between this definition and the distance weighted harmonic mean 

can be seen in Equation 6.2, where the distance factors out of the numerator and the expression 

simplifies to the sum of distances traveled divided by the sum of travel time. Despite this 

equivalence, the distance weighted mean interpretation is useful, because it indicates that distance 

rather than time is the basis for weighting individual vehicle speeds. In this way, we move away 

from the implicit time weighting that is the basis for the point sampling and vehicle mean methods 

described previously.  

𝜇�̃� = [
∑ 𝑑𝑖𝑠𝑡𝑖,𝑡

𝑡𝑖
𝑑𝑖𝑠𝑡𝑖,𝑡

𝑛
𝑖=1

∑ 𝑑𝑖𝑠𝑡𝑗,𝑡
𝑛
𝑗=1

]

−1

= [
∑ 𝑡𝑖
𝑛
𝑖=1

∑ 𝑑𝑖𝑠𝑡𝑗,𝑡
𝑛
𝑗=1

]
−1

=
∑ 𝑑𝑖𝑠𝑡𝑗,𝑡
𝑛
𝑗=1

∑ 𝑡𝑖
𝑛
𝑖=1

  ( 6.2 ) 

Where: 

𝜇�̃� = mean speed estimate for observation interval t 

𝑑𝑖𝑠𝑡𝑖,𝑡 = distance traveled on the link by vehicle i during observation interval t 

𝑣𝑖 = mean speed of vehicle i during observation interval t 

 Generally speaking, pairwise speed estimation based on travel distance and time is more 

accurate and precise than pointwise GPS speed. This fact and any related analysis are ignored in 

this work. Instead, the focus is on the relationship between sampling parameters, traffic state, 

sampling bias and observation error unrelated to GPS accuracy.  
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 To calculate the distance weighted harmonic mean speed, the first step is to estimate the 

approximate trajectory of a point. This done when a location update arrives by first computing the 

mean speed between the points, and then allocating this mean speed to current and past observation 

intervals and road links based on the travel time / speed relationship. This is illustrated in Figure 

6-16, which shows two subsequent location updates occurring on two separate road segments. If 

the observation interval length is 60 seconds, then each update occurs in a separate observation 

interval as well, one starting at 13:04:00 and the other starting at 13:05:00. The calculated mean 

travel speed is allocated to the final 2360 feet of road link A, and to the first 800 feet of road link 

B. The time at which the vehicle left Link A is unknown, but can be estimated using the calculated 

mean speed. The result is shown in Table 6-5, where the distance is allocated between road 

segments and observation intervals. First, the transfer time between the start, end, and all 

intermediate links is estimated from the mean speed. Then, the distance traversed on each link is 

split based on the break points of the observation intervals.  

 

Figure 6-16: Illustration of Distance Speed Calculation 

Table 6-5: Distance Allocation between all Road Links and Observation Intervals 

Observation Interval 1 2 

Road Link A A B 

Time (seconds) 39 5.85 15.15 

Distance (feet) 2059 309 800 

Speed (mph) 36 
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It may be clear to the reader that this method will introduce some error when the speeds on adjacent 

road links differ significantly. For example, if the speed on road link B in Figure 6-16 is 

significantly lower than on road link A, the speed value assigned to road link A will to some extent 

reflect the slower speed traveled on Link B between updates. In effect, this smooths the speeds 

between adjacent links. However, this approach will reduce the rate of missing data (because an 

update need not fall on a road link in order for the link to be “observed”) and generally improve 

accuracy in all but the most extreme cases.  

 There are, of course, other methods that could be used to combine vehicle location updates 

into aggregate link speeds. For example, a time weighting scheme could be used rather than 

distance weighting. However, the objective is to characterize as accurately as possible the mean 

speed over the length of a road segment from point pairs, most of which do not span the full extent 

of the segment. A time weighting scheme would increase the weight for slower moving vehicles, 

even for a point pair that represents the exact same section of a road as a faster moving vehicle. In 

fact, a time weighting scheme is very similar to the point-wise mean speed approach, which 

essentially weights vehicles’ speed according to how long they spend on the segment, assuming 

identical sampling frequencies.  

6.3.2 Test Scenarios 

The primary mechanisms that contribute to bias and inaccuracy will be driven by the sampling 

parameters that are present in the probe vehicle population. Thus, to illustrate the utility of the 

proposed bias correction method, three hypothetical scenarios are devised, each of which 

associated with particular mechanism contributing to bias. Each scenario has been simulated using 

PTV VISSIM, and the results presented and discussed. The roadway geometry and simulation 
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parameters are identical to the model used in the Validation section, only the traffic, vehicle, and 

sampling parameters are changed.  

6.3.2.1 Scenario 1 

In the first scenario, the probe vehicle population is a representative of the true traffic 

population. Thus, the primary source of bias is the fact that slower moving and more frequently 

sampled vehicles are disproportionately represented. Under this scenario, it will be possible to 

simply use inverse probability weighting for each vehicle, with probability weights based on the 

likelihood of that vehicle being observed. To assess this scenario, a simulation model was built in 

PTV VISSIM with three distinct vehicle subpopulations and a combined total vehicle volume of 

3500 vehicles / hour. All vehicle subpopulations are equal in volume and penetration rate, they 

only differ in their desired speed distribution and sampling interval distributions. The desired speed 

and sampling interval distributions are shown in Figure 6-17 and Figure 6-18, respectively. The 

geometry of the simulated roadway is identical to that shown in the validation section (Section 

Chapter 5:). 

 

Figure 6-17: Desired Speed CDFs for Three Vehicle Subpopulations 
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Figure 6-18: Sampling Interval Distribution for Subpopulations 1-3 (from left to right) 

It can be expected in this scenario that, given the penetration rates are equal for all subpopulations, 

the bias present will be relatively small. Furthermore, as noted previously, the inverse probability 

weighting methods will be increasingly beneficial as the penetration rate of all vehicles increases. 

Thus, a range of penetration rates are investigated to show this relationship.  

 Figure 6-19 and Figure 6-20 show the mean absolute percent error and mean bias for all 

four speed estimation methods: Vehicle mean speed, Inverse probability weighted vehicle mean 

speed, distance weighted pairwise mean speed, and sample mean speed. The inverse probability 

weighting scheme reduces bias as expected, but does so at a small penalty in mean squared error. 

It is important to note that the expected observation bias in this scenario is small, because the probe 

vehicle population is representative of the full vehicle population. A larger disparity in the 

sampling rates, a highly heterogeneous vehicle/driver population, or differences in penetration 

rates between different subpopulations could all contribute to more dramatic bias. In such cases, 

the bias would be a larger contributor to mean squared error, which would favor the inverse 

probability weighting scheme over the vehicle mean speed in terms of mean squared error. That 

said, the distance weighted pairwise speed method outperforms all other methods at every 

penetration rate, and reduces the bias to near zero even at relatively low penetration rates.  
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Figure 6-19: Mean Squared Error vs. Penetration Rate for all Speed Estimation Methods 

 

Figure 6-20: Bias vs. Penetration Rate for All Speed Estimation Methods 

 Figure 6-21 through Figure 6-26 show the Mean Squared Error and Bias for penetration 

rates 0.01, 0.05, and 0.1. It is again clear from these plots that the inverse probability weighting 

scheme systematically reduces bias, but increases mean squared error somewhat for all but the 

lowest penetration rates. The distance weighted speed method performs the best overall, reducing 
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bias and error over all penetration rates. Note however that the distance weighted speed method 

produces a positive bias on road segment 7 and a small negative bias on the two adjacent segments. 

This is because segment 7 has a slowdown section (as noted previously), and this speed estimation 

method tends to conflate adjacent segments to some degree as described in Section 6.3.1.3. That 

is, a certain portion of travel that took place on segment 6 was assigned to segment 7, and vice 

versa. Because vehicles travel faster on segment 6, this produces a slight negative bias on segment 

6 and positive bias on segment 7.  

 

Figure 6-21: Observed Mean Squared Error For Penetration Rate of 0.01 
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Figure 6-22: Observed Bias for Penetration Rate of 0.01 

 

Figure 6-23: Observed Mean Squared Error for Penetration Rate of 0.05 
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Figure 6-24: Observed Bias for Penetration Rate of 0.05 

As the penetration rate increases, the accuracy of the point-based methods improves dramatically. 

Still, the bias of the sample average method continues to degrade, and it consistently performs the 

worst overall. It is also clear that the difference between the three point-based methods increases 

as the penetration rate increases. To explain, consider that all three methods will be equivalent 

when only a single vehicle is observed during an observation interval. As the number of observed 

vehicles per observation interval increases, the difference between mean vehicle speed, mean 

sample speed, and weighted mean vehicle speed will increase.  
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Figure 6-25: Observed Mean Squared Error for Penetration Rate of 0.1 

 

 

Figure 6-26: Observed Bias for Penetration Rate of 0.1 

6.3.2.2 Scenario 2 

In this scenario, the penetration rates of the contributing vehicle subpopulations is allowed to vary, 

such that the probe population is no longer a representative sample of the overall vehicle 

population. As a result, in addition to the adjustment method described in the previous section, a 

second weighting step is applied to address the resulting bias. This method assumes that some 
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estimate of the relative volumes of each subpopulation can be estimated, and applies this 

information to adjust the overall mean speed to reflect the relative share of each subpopulation 

present in the traffic stream. As noted previous, certain subpopulations may not be represented at 

all in many observation intervals, and there may be observation intervals which are missing 

completely. Thus, the previously described imputation scheme is applied to insure that all 

subpopulations are appropriately represented in all observation intervals. This addresses two forms 

of bias that are observed in probe vehicle data, 1) that the observed vehicle population may differ 

significantly from the true vehicle population and 2) that slower moving, more congested time 

periods are less likely to be missing completely, all else being equal.  

 The scenario used to test this approach is identical to the previous scenario, except that the 

penetration rate is allowed to vary between subpopulations. This is done by defining an overall 

penetration rate over all probe vehicles and a relative share for each subpopulation. This way, the 

effectiveness of the proposed approach can be assessed over a range of penetration rates for a fixed 

mix of different subpopulations. An example is given here in Table 6-6, for which the volume of 

all vehicles is equal between the three subpopulations, but the penetration rates of contributing 

vehicles changes. This table should be interpreted as showing that just over 71% of all vehicles 

comes from subpopulation 2, which is equivalent to a penetration rate of approximately 4.3% when 

the overall penetration rate is 2.0%. Note that the total penetration rate is the simple mean of 

penetration rates in Table 6-6Error! Reference source not found., but this is only true because t

he total traffic volumes for the three subpopulations are equal. Otherwise, the total penetration rate 

would be a weighted average of penetration rates, weighted by the respective total traffic volumes 

of each subpopulation. 
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Table 6-6: Relative Share and Example Penetration Rates for Scenario 2 

 Relative Share Penetration Rate 

Subpopulation 1 0.143 0.0086 

Subpopulation 2 0.714 0.0429 

Subpopulation 3 0.143 0.0086 

Total 1.0 0.02 

The distance weighted pairwise mean speed estimation produced the best results in the first 

scenario, so the focus here is exclusively on comparing the adjusted vs. unadjusted speed computed 

using this method. All the estimated speed values in the following results are based on the distance 

weighted pairwise mean speed. Figure 6-27 shows part of the simulation results for the penetration 

rates give in Table 6-6, the sampling interval distributions given in Figure 6-18, and an observation 

interval of 60 seconds. Note that the adjusted results are generally less noisy and closer to the true 

speed values. The adjusted values are also complete for all observation intervals, which is not the 

case for the raw data. Furthermore, in the raw values there is a clear bias toward lower speeds, 

which again does not appear to be present in the adjusted values.  
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Figure 6-27: Example of Adjusted Speed Results (penetration rate = 0.02) 

Figure 6-28 and Figure 6-29 show the mean absolute percent error for the raw and adjusted data, 

respectively, over three different penetration rates (0.01, 0.05, and 0.10). As previously noted, the 

relative share of each vehicle subpopulation is help constant, only the overall penetration rate is 

varied. It is clear from these figures that the adjusted data provides more accurate results over all 

road segments and penetration rates, but the benefit is less pronounced for the higher penetration 

rates. The reason for this is that the bias attributable to vehicles being over-represented due to 

being slow or more frequently sampled is not significant here, as the distance-weighted pairwise 

mean speed calculation method is used. Thus, the two primary causes of error are observation 

noise due to low sample size and missing vehicle subpopulations due to low penetration rates. 

Thus, as the overall penetration rate increases, it is more likely that all subpopulations will be 

present during a given observation interval, thereby reducing the bias attributable to these causes.  
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Figure 6-28: Mean Squared Error for Raw Observed Data 

 

Figure 6-29: Mean Squared Error for Adjusted Data 

The traffic conditions represented here are uncongested and relatively steady over time. One can 

expect that in more variable traffic conditions, the more congested time periods will be the most 

complete, which will contribute to even greater bias in the raw data. To show how the relationship 

between the true, raw observed, and adjusted observed speed compare under changing traffic 

conditions, another round of simulation was completed. In this case, the traffic volume was 

Penetration 

Rate 

Penetration 

Rate 
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increased from 3500 vehicles / hour to 8200 vehicles / hour at around 60 minutes into the 

simulation. This is equivalent 2050 vehicles / lane / hour, which is near the capacity of the 

simulated roadway.  

 

Figure 6-30: Example Adjusted Speed Results for Congested Scenario (penetration rate = 0.02) 

Figure 6-31 through Figure 6-36 show the mean squared speed estimation error and bias for 

dynamic volume case described above. Because the difference between the raw and adjusted 

results is not as substantial as in the previous case, they are plotted together to allow better 

comparison. Though the atdvantages of the imputation and adjustment method are not as 

substantial in this case, the method does provide significant and consistent benefit. 
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Figure 6-31: Mean Squared Error for Penetration Rate of 0.01 

 

Figure 6-32: Bias for Penetration Rate of 0.01 
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Figure 6-33: Mean Squared Error for Penetration Rate of 0.05 

 

Figure 6-34: Bias for Penetration Rate of 0.05 
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Figure 6-35: Mean Squared Error for Penetration Rate of 0.1 

 

Figure 6-36: Bias for Penetration Rate of 0.1 

Figure 6-37 below shows the mean squared error over all tested penetration rates. Note that, while 

the benefit of the speed adjustment does decline with increasing penetration rate, again the decline 

is not as pronounced as in the constant volume, uncongested scenario. This can be explained by 

the fact that the majority of these simulation time was spent at more than twice the volume as the 

constant volume scenario, when the majority of the unadjusted data was complete even at the lower 
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penetration rates. Furthermore, there is some penalty to the interpolation / smoothing operation at 

higher volume rates. This is because, as congestion increases, there is less difference between the 

vehicle population in terms of mean speed, which reduces the benefit of filling in missing 

subpopulations In addition to filling in missing values, the imputation methodology smooths over 

some of the fluctuations in traffic speed, which may further reduce the utility of the proposed 

method. 

 

Figure 6-37: Mean Squared Error for the Raw and Adjusted Speed Values 

6.3.3 Discussion 

The methods described in this section are not highly sophisticated, but they do present a practical 

and highly scalable approach to improving the quality of probe vehicle-based traffic data. It was 

shown that, even ignoring issues of GPS speed estimation accuracy, the distance-weighted speed 

estimation method outperforms pointwise speed estimation in all tested conditions. It was also 

shown that, by imputing missing speed values at the subpopulation level, both bias and accuracy 
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can be improved in a variety of traffic conditions. This is an important point, and one that 

underscores the importance of having insight into the sampling and data collection process.  

 The two scenarios presented here illustrate the fact that there are several causal mechanisms 

related to bias in probe vehicle data. First, there is the bias caused by the fact that slower moving 

vehicles are over sampled relative to faster moving vehicles. The second is that differences in 

sampling frequency can lead to certain vehicle subpopulations being over represented in point-

based speed estimation methods. Both of these mechanisms are addressed fairly well by the inverse 

probability weighting scheme, albeit at a small increase in absolute error. Further more, these two 

mechanisms have little impact on the distance weighted speed estimation method, which 

demonstrates no systematic bias in scenario 1. The third source of bias is differing penetration 

rates, which again could lead to certain subpopulations being overrepresented. This is dealt with 

effectively by applying some imputation method on the data for individual subpopulations, and 

combining subpopulation speeds according the known or estimated population fractions 

represented by each subpopulation. These population fractions could be estimated by developing 

scaling factors based on known traffic populations at fixed locations where mechanical sensors are 

present, and then applying the scaling factors to adjust measured speed on a larger scale. From 

Figure 6-27 it is clear that applying imputation on pre-aggregated link-level speed data (ignoring 

the differences between subpopulations) will not always address the bias that arises in the sampling 

process. On the other hand, when traffic is congested as shown in , there is less difference between 

the subpopulations and hence less benefit to applying imputation at a subpopulation level. That 

said, it is clear that the proposed combination of distance-weighted pairwise mean speed 

estimation, imputation at the subpopulation level, and population weighting provides some benefit 

in all tested scenarios.  
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Chapter 7: Concluding Remarks 

This dissertation has introduced and applied a conceptual and methodological framework for 

analyzing sample size, sampling bias, and missingness in probe vehicle data. Furthermore, it has 

introduced a set of application scenarios that provide a solid basis for the proposed framework as 

a powerful tool for addressing data quality issues unique to this source of data. Specifically, the 

following work has been completed, documented, and discussed in this dissertation: 

 Introduced a quantitative framework for describing the sample size, missing data rate, and 

sampling bias in probe vehicle data under mixed traffic and sampling conditions, given the 

true traffic state and sampling parameters 

 Introduced analytical and Monte Carlo sampling methods to estimate the joint distribution 

of sampling rate, missing data, and observed speed under mixed traffic and sampling 

conditions 

 Validated the proposed framework in a variety of conditions using microscopic simulation 

 Applied the principles of the proposed framework on real-world probe vehicle data to 

estimate data completeness on a variety of road segment geometries under varying traffic 

conditions 

 Introduced planning-level approach to estimate the sample size and completeness for 

developing new probe vehicle data collection experiments 

 Introduced a set of methods for addressing bias and improving the quality of probe vehicle 

data 

This research makes a number of assumptions about what is known, and what can be known 

about a unique data collection process. The extent to which this work is useful in a given 

application is in part based on how well these assumptions align with the scenario of interest. This 
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work is intended to be forward looking in that individuals applying these methods are expected to 

have more control over the data collection process than the current state of practice. Even with 

these assumptions, this work build substantially on the current state of research on this topic (e.g. 

M. Ferman, Blumenfeld, and Dai 2005). 

The results of the work that has been completed (including work that is not described in 

this document) suggest that the concepts described here apply to a wide range of traffic conditions. 

However, it is important to note that only a small fraction of all possible scenarios is presented 

here, and they are by no means representatives of all conditions that may be found in the real 

world. A particular mix of driving behavior, traffic, and sampling parameters may produce much 

more severe bias issues than are represented here. Or, conversely, different mechanisms that 

contribute to bias may cancel each other out, producing little or no bias in the measured data. For 

example, if a faster moving vehicle subpopulation had a slightly higher penetration rate, this may 

offset the fact that slower moving vehicles are more likely to be represented in the dataset. This 

underscores the importance of transparency in the data collection process, and the need for public 

agencies to be involved in or at least aware of the data processing and quality control methods 

applied.  

There are a variety of applications for probe vehicle data that are not dealt with in this 

work, such as vehicle trajectories for signal timing analysis. Such applications have their own 

coverage, quality, and granularity requirements that may or may not be met by existing probe 

vehicle data sources. While this work deals with a specific set of quality issues unique to a 

particular use case, it is important to keep in mind that a variety of other applications could benefit 

from greater transparency on the part of the probe vehicle data providers. For example, in the 

signal timing and intersection performance analysis example, consumers (i.e. transportation 
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agencies) could benefit from a better understanding of the vehicle subpopulations represented in 

the probe population. If the probe population heavily favors a particular driver demographic or 

travel pattern, this could bias the results in a variety of ways.  

 Future extensions of this work include assessing the relationship between pair-wise 

distance weighted speed estimation accuracy, sampling interval length, and road segment length. 

Consider that, as the sampling interval increases relative to the travel time across individual road 

segments, any variation in speed due to traffic conditions, traffic control devices, and other factors 

will be effectively smoothed out. In addition, more work remains to be completed on the impact 

of traffic signals, access points, and other traffic complexities common in an urban environment. 

The analysis described here focusses on controlled access, non-signalized highways where stops 

and platooning are not present, though many of the same sampling-related issues will be present 

on signalized arterials and other facilities.  
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